共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Chiloeches R. Fernández-García M. Fernández-García A. Mariano I. Bigioni A. Scotto d'Abusco C. Echeverría A. Muñoz-Bonilla 《Macromolecular bioscience》2023,23(1):2200401
Antimicrobial fibers based on biodegradable polymers, poly(lactic acid) (PLA), and poly(butylene adipate-co-terephthalate) (PBAT) are prepared by electrospinning. For this purpose, a biodegradable/bio-based polyitaconate containing azoles groups (PTTI) is incorporated at 10 wt.% into the electrospinning formulations. The resulting fibers functionalized with azole moieties are uniform and free of beads. Then, the accessible azole groups are subjected to N-alkylation, treatment that provides cationic azolium groups with antibacterial activity at the surface of fibers. The positive charge density, roughness, and wettability of the cationic fibers are evaluated and compared with flat films. It is confirmed that these parameters exert an important effect on the antimicrobial properties, as well as the length of the alkylating agent and the hydrophobicity of the matrix. The quaternized PLA/PTTI fibers exhibit the highest efficiency against the tested bacteria, yielding a 4-Log reduction against S. aureus and 1.7-Log against MRSA. Then, biocompatibility and bioactivity of the fibers are evaluated in terms of adhesion, morphology and viability of fibroblasts. The results show no cytotoxic effect of the samples, however, a cytostatic effect is appreciated, which is ascribed to the strong electrostatic interactions between the positive charge at the fiber surface and the negative charge of the cell membranes. 相似文献
2.
3.
Er-Jun Sun Xiao-Yan Bai Yu Chang Qin Li Xin-Ru Hui Yan-Song Li Yue Wang 《Molecules (Basel, Switzerland)》2022,27(23)
Porphyrins have a large π–π conjugation force between molecules, and they are easy to aggregate in solution, which affects the photoelectric properties of porphyrins. Connecting porphyrins to polymer links through covalent bonds not only retains the mechanical properties and thermal stability of polymer materials, but also has the photoelectric properties and catalytic properties of porphyrins, which improves the availability of materials. In this study, first, a porphyrin ligand with double bonds in the side chain was designed and the corresponding copper and zinc complexes were synthesized by adjusting the metal ions in the center of the pyrrole ring. Then, the metalloporphyrin complexes were copolymerized with methyl methacrylate (MMA), and two metalloporphyrin/PMMA copolymers were obtained: CPTPPCu/PMMA and CPTPPZn/PMMA. The structure of the compounds was characterized by IR, 1H NMR, MS, and UV-Vis spectra. Metalloporphyrin/PMMA copolymers were prepared into electrospun fiber materials by electrospinning. The morphology of the composites was studied by SEM, and the thermal stability and optical properties of electrospun fibers were studied by TGA and FL. The catalytic activity of electrospun fiber materials for the degradation of organic dyes was studied. The results showed that the efficiency of the metalloporphyrin/PMMA copolymer in photocatalytic degradation of methylene blue (MB) was better than that of the PMMA electrospun fiber blended with metalloporphyrin. 相似文献
4.
原子转移自由基聚合(ATRP)是目前为止最具工业化应用前景的活性/可控自由基聚合方法之一,其最大特点是可以得到分子量分布窄、链结构规整的聚合物,而且可聚合的单体种类多,反应条件温和并易控制。表面引发ATRP(SI-ATRP)特别适合于无机材料表面接枝聚合物或无机/有机复合材料的制备,近年来引起了国内外研究者的高度关注。本文首先对SI-ATRP的反应过程与特点做了阐述,然后重点述评了用SI-ATRP法合成以非金属氧化物纳米粒子、金属氧化物纳米粒子、金属纳米粒子或其他无机纳米粒子为核的无机/有机复合纳米粒子的研究进展,最后对未来用SI-ATRP法合成无机/有机复合纳米粒子的发展方向和研究前景进行展望。 相似文献
5.
Mehrajfatema Zafar Mulla Md Ramim Tanver Rahman Begonya Marcos Brijesh Tiwari Shivani Pathania 《Molecules (Basel, Switzerland)》2021,26(7)
Poly lactic acid (PLA) is a compostable, as well as recyclable, sustainable, versatile and environmentally friendly alternative, because the monomer of PLA-lactide (LA) is extracted from natural sources. PLA’s techno-functional properties are fairly similar to fossil-based polymers; however, in pristine state, its brittleness and delicacy during processing pose challenges to its potential exploitation in diverse food packaging applications. PLA is, therefore, re-engineered to improve its thermal, rheological, barrier and mechanical properties through nanoparticle (NP) reinforcement. This review summarises the studies on PLA-based nanocomposites (PLA NCs) developed by reinforcing inorganic metal/metallic oxide, graphite and silica-based nanoparticles (NPs) that exhibit remarkable improvement in terms of storage modulus, tensile strength, crystallinity, glass transition temperature (Tg) value, antimicrobial property and a decrease in water vapour and oxygen permeability when compared with the pristine PLA films. This review has also discussed the regulations around the use of metal oxide-based NPs in food packaging, PLA NC biodegradability and their applications in food systems. The industrial acceptance of NCs shows highly promising perspectives for the replacement of traditional petrochemical-based polymers currently being used for food packaging. 相似文献
6.
无机纳米粒子的生物合成是指利用自然界中细菌、放线菌和真菌等微生物或一些高等植物在常温、常压下合成无机纳米粒子,不需使用有毒化学原料或不产生有毒副产品。该方法不仅是一种绿色的、环境友好的新型纳米材料合成策略,而且对深入了解生物矿化机理以及从理论上指导先进功能材料的设计和合成具有重要意义,因此近年来受到了化学、材料、生物科学等领域研究者的广泛关注。本文根据纳米粒子组成,分别综述了国内外利用生物体合成金属、硫化物和氧化物等无机纳米粒子的研究进展,重点讨论了生物合成的机理。结果表明:生物合成的无机纳米粒子具有尺寸分布窄、稳定性高、生物相容性好、产率高和成本低等优点; 为了适应高金属离子浓度的外界环境,生物体往往通过吸附、还原或沉淀、累积或排出等一系列生化过程改变金属离子的溶解性和毒性,从而导致无机纳米粒子的形成; 合成无机纳米粒子后,微生物通常仍具有繁殖能力,表明这些微生物可以被用于生产无机纳米粒子的生物工厂。然而,生物合成无机纳米粒子涉及到的生理过程非常复杂,微生物种类繁多,不同种类之间的差异也非常大。因此,在阐释生物合成机理、拓展纳米材料的种类和形貌、纳米粒子的后处理和应用等问题上仍需进一步深入研究。 相似文献
7.
YAN Jie WANG Dong BAI Tian CHENG Wanli HAN Guangping NI Xiaohui SHI Q. Sheldon 《高等学校化学研究》2021,37(3):505-511
To enhance the mechanical and antibacterial properties of silver nanoparticle impregnated cellulosic fibers, carboxy-cellulose nanocrystals(CCNs) were grafted with chitooligosaccharide(COS), which was used as a stabilizer for silver nanoparticles (AgNPs). Nanofibrous membranes reinforced with silver nanoparticle impregnated cellulosic fibers(CCN-COS-AgNP) were prepared via electrospinning using polyvinyl alcohol(PVA) as a matrix. The effects of CCN-COS-AgNP contents on the morphology, surface composition, mechanical properties, and antibacterial performances of the prepared CCN-COS-AgNP/PVA membranes were examined. The addition of CCN-COS-AgNP certainly improved the mechanical properties and antibacterial performances of the PVA nanofibers. The tensile strength was significantly increased from 4.40 MPa to 8.60 MPa when 8% CCN-COS-AgNP(mass ratio) was introduced. When 10%(mass ratio) CCN-COS-AgNP was added, the nanofibers showed an excellent antibacterial activity for S. aureus(Staphylococcus aureus) and E. coli(Escherichia coli), with the maximum inhibition zones of 2.30 and 1.60 cm, respectively. Moreover, the 2%(mass ratio) CCN-COS-AgNP/PVA fibrous membrane showed 126% cell viability for mg63 human osteoblasts. The electrospun PVA membrane has great potential application in biomedical field. 相似文献
8.
Hazim J. Haroosh Yu Dong Gordon D. Ingram 《Journal of Polymer Science.Polymer Physics》2013,51(22):1607-1617
The effects of pure and impure magnetic nanoparticles (MPs) with three different concentrations (0.01, 0.1, and 1 wt %/v) on the morphological structure, crystallinity level, thermal properties and constituent interactions of electrospun poly(lactic acid) (PLA): poly(ε‐caprolactone) (PCL)‐based composites were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and drug release tests using UV–vis spectrophotometry. Tetracycline hydrochloride (TCH), as a typical therapeutic compound, was loaded into these composite fibrous structures to study their application for drug delivery. The infrared spectra of composite nanofibers confirm the successful embedding of MPs into the fibrous networks. The addition of pure MPs increased the solution viscosity and thus promoted the MP dispersion inside the electrospun composite fiber mats. Impure MPs led to considerably lower average fiber diameters, and could generate unique cell structures that were reported for the first time in this study. The accelerated release of TCH was found by adding pure MPs to PLA:PCL blends. This characteristic was reflected in the parameters of Ritger‐Peppas and Zeng models, which were well fitted to our experimental drug release data. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1607–1617 相似文献
9.
10.
无机纳米粒子的引入可以使聚合物材料获得抗菌、导电和防紫外等诸多特性,但无机纳米粒子在聚合物基质中易团聚、引入量少,难以充分发挥其优点。细乳液聚合法基于其独特的成核方式--液滴成核,能够提高无机纳米粒子在聚合物基中的分散性和引入量,且复合材料的形貌易于控制,是目前制备特殊形貌有机/无机纳米复合材料的一种有效手段。本文介绍了有机/无机复合纳米材料的细乳液制备过程,综述了近年来不同无机纳米粒子与有机基质复合的研究进展,例如:纳米SiO2、纳米ZnO、金属纳米粒子、纳米氧化石墨烯等。最后就其发展现状提出了几点建议。 相似文献
11.
本文对近5年来有机/无机复合骨修复材料研究领域的进展进行了综述,根据材料组分的特点分析其在生物相容性、生物降解性、生物活性以及力学性能等方面的优缺点,同时探讨了目前骨修复材料领域存在的问题,并对今后人工骨替代材料的发展趋势作出了展望。 相似文献
12.
《Analytical letters》2012,45(9):715-734
Abstract The conditions for the determination of sodium thiophosphate and sodium S-(2-amino-ethyl)-thiophos-phate in the presence of phosphate ion using ion-selective membrane electrodes are described. Both thiophosphates (inorganic and organic) are hydrolyzed in acidic medium. The phosphate ion is determined with Pb(II) using a Pb2+ – selective membrane electrode. Cysteamine is determined by potentiometric titration with Hg(I1) using a Ag+/S2? – crystal membrane electrode or by direct potentiometry with a Cu2+ selective membrane electrode. The results were verified by the iodination method. 相似文献
13.
Hristo Penchev Dilyana Paneva Nevena Manolova Iliya Rashkov 《Macromolecular bioscience》2009,9(9):884-894
Hybrid nanofibers from chitosan or N‐carboxyethylchitosan (CECh) and silver nanoparticles (AgNPs) were prepared by electrospinning using HCOOH as a solvent. AgNPs were synthesized in situ in the spinning solution. HCOOH slowed down the cross‐linking of the polysaccharides with GA enabling the reactive electrospinning in the presence of poly(ethylene oxide) (PEO). EDX analyses showed that AgNPs are uniformly dispersed in the nanofibers. Since AgNPs hampered the cross‐linking of chitosan and CECh with GA in the hybrid fibers, the imparting of water insolubility to the fibers was achieved at a second stage using GA vapors. The surface of chitosan/PEO/AgNPs nanofibers was enriched in chitosan and 15 wt.‐% of the incorporated AgNPs were on the fiber surface as evidenced by XPS.
14.
An attempt is made to classify transparent organic/inorganic materials synthesized by the sol–gel process. The chemical structures of the hybrids are the main criteria for this classification. Three main types of organic/inorganic gels are distinguished and their basic physico-chemical characteristics are outlined. © 1997 by John Wiley & Sons, Ltd. 相似文献
15.
Daniel Crespy Kathrin Friedemann Ana‐Maria Popa 《Macromolecular rapid communications》2012,33(23):1978-1995
Solution‐, melt‐, and co‐axial electrospinning are well‐known methods for producing nano‐ and microfibers. The electrospinning of colloids (or colloid‐electrospinning) is a new field that offers the possibility to elaborate multicompartment nanomaterials. However, the presence of colloids in the electrospinning feed further complicates theoretical predictions in a system that is dependent on chemical, physical, and process parameters. Herein, we give a summary of recent important results and discuss the perspectives of electrospinning of colloids for the synthesis and characterization of multicompartment fibers. 相似文献
16.
无机材料电子迁移率高、光谱响应范围与太阳光谱匹配,而有机材料价格低廉、合成方法简单、容易制作在基底上,因此在太阳能电池中具有更广阔的应用前景。 目前,阻碍有机太阳能电池发展的主要原因是材料的载流子迁移率低、器件稳定性差、吸收光谱与太阳光谱不匹配,导致光电转换效率较低。 若能将有机、无机材料二者的优点相结合,将可提高有机太阳能电池的能量转换效率。 目前的研究已经取得了一定进展,无机材料在受体层、阴极缓冲层、阳极缓冲层中的应用均不同程度地提高了有机太阳能电池的能量转换效率。 本文综述了目前该领域的研究现状,并对今后的研究提出了展望。 相似文献
17.
使用静电纺丝技术结合水热法制备了表面锚定ZnO纳米颗粒的亚微米碳纤维(ZnO/SDCFs)复合物,并详细研究了反应溶液的pH值对复合物的结构、组成、电磁特性和吸波性能的影响。结果显示,随着pH值的升高,ZnO的含量增加,介电常数、介电损耗以及电磁衰减能力均下降,但阻抗匹配程度提高。相比于纯碳纤维,所有ZnO/SDCFs复合物的吸波性能均得到不同程度的加强。其中,pH值等于8时所制备的ZnO/SDCFs-8复合物拥有最好的吸波性能,主要归因于电磁衰减能力和阻抗匹配间的更好平衡。当ZnO/SDCFs-8的填充量仅为2.5%(质量分数)、厚度为1.7 mm时,相应吸波涂层的最小反射损耗达到-44.1 dB,低于-10 dB的有效吸收带宽为6.1 GHz,频率范围为11.9~18 GHz;当厚度为3.0 mm时,有效吸收带宽可提高到11.8 GHz(6.2~18 GHz)。 相似文献
18.
19.
Coating and Gas Permeation Properties of Urushiol-Based Organic/Inorganic Hybrid Films 总被引:2,自引:0,他引:2
Lim Chunwon Hong In Su Hong Suk-In Jang Kyoungmi Kim Jun Seok Kim Hyunjoon 《Journal of Sol-Gel Science and Technology》2004,30(2):117-128
The silica and urushiol based organic/inorganic hybrid was prepared with TEOS and urushiol by sol-gel process. GLYMO, as a silane-coupling agent, was used to obtain crack-free homogeneous films in various molar ratios, and to improve the adhesion between corona-treated BOPP substrate and the coatings. Two kinds of coating solutions were prepared; one was composed of TEOS and urushiol, the other was a mixture of TEOS, GLYMO and urushiol. Urushiol created less cracks on the film in a narrow range of molar ratios. As the amounts of urushiol were increased, the coating solutions quickly became heterogeneous. GLYMO was sufficient to prevent microcracks on the coated film and provided homogeneous coating solution. TEOS/urushiol and TEOS/GLYMO/urushiol coating solution gave insignificant effect on the permeability coefficients of oxygen, nitrogen and carbon dioxide, because the unsaturated alkyl side chain of urushiol might retard the formation of a dense structure between the inorganic silicate and the organic urushiol phase. From the antibacterial test of uncoating PP substrate and the coated film with hybrid solution, the reduction of bacteria of coating film was calculated to be 99.8%. 相似文献
20.
Ultrafine poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene-vinylene) (MEH-PPV)/polyvinylpyrrolidone (PVP) blend fibers with the average diameters ranging from 625 nm to 1.46 µm were prepared by electrospinning of polymer blend solutions in the mixed solvent of chlorobenzene and methanol. The average diameter of fibers was found to decrease with initial increase in the applied electrical potential and composition of MEH-PPV, reach a minimum value at an intermediate value, and increase with further increase in the applied electrical potential and composition of MEH-PPV, while it was found to decrease with increasing collection distance. PVP was easily removed from MEH-PPV/PVP fibers by the Soxhlet extraction, and after the removal of PVP at high composition of MEH-PPV, pure MEH-PPV fibers were obtained as a ribbon-like structure aligned with wrinkled surface in fiber direction. The increase in MEH-PPV composition and the removal of PVP from as-spun MEH-PPV/PVP fibers resulted in a significant blue-shift in UV-Vis absorption peak and red-shift in PL peak. 相似文献