首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photophysical relaxation mechanisms of 1-cyclohexyluracil, in vacuum and water, were investigated by employing the Multi-State CASPT2 (MS-CASPT2, Multi-State Complete Active-Space Second-Order Perturbation Theory) quantum chemical method and Dunning’s cc-pVDZ basis sets. In both environments, our results suggest that the primary photophysical event is the population of the S11(ππ*) bright state. Afterwards, two likely deactivation pathways can take place, which is sustained by linear interpolation in internal coordinates defined via Z-Matrix scans connecting the most important characteristic points. The first one (Route 1) is the same relaxation mechanism observed for uracil, its canonical analogue, i.e., internal conversion to the ground state through an ethylenic-like conical intersection. The other route (Route 2) is the direct population transfer from the S11(ππ*) bright state to the T23(nπ*) triplet state via an intersystem crossing process involving the (S11(ππ*)/T23(nπ*))STCP singlet-triplet crossing point. As the spin-orbit coupling is not too large in either environment, we propose that most of the electronic population initially on the S11(ππ*) state returns to the ground following the same ultrafast deactivation mechanism observed in uracil (Route 1), while a smaller percentage goes to the triplet manifold. The presence of a minimum on the S11(ππ*) potential energy hypersurface in water can help to understand why experimentally it is noticed suppression of the triplet states population in polar protic solvent.  相似文献   

2.
3.
In this paper, the degradation of the diazo dye naphthol blue black (NBB) using the Galvano-Fenton process is studied experimentally and numerically. The simulations are carried out based on the anodic, cathodic, and 34 elementary reactions evolving in the electrolyte, in addition to the oxidative attack of NBB by HO at a constant rate of 3.35×107 mol1·m3·s1 during the initiation stage of the chain reactions. The selection of the operating conditions including the pH of the electrolyte, the stirring speed, and the electrodes disposition is performed by assessing the kinetics of NBB degradation; these parameters are set to 3, 350 rpm and a parallel disposition with a 3 cm inter-electrode distance, respectively. The kinetics of Fe(III) in the electrolyte were monitored using the principles of Fricke dosimetry and simulated numerically. The model showed more than a 96% correlation with the experimental results in both the blank test and the presence of the dye. The effects of H2O2 and NBB concentrations on the degradation of the dye were examined jointly with the evolution of the simulated H2O2, Fe2+, and HO concentrations in the electrolyte. The model demonstrated a good correlation with the experimental results in terms of the initial degradation rates, with correlation coefficients exceeding 98%.  相似文献   

4.
Tyrosinase is the enzyme involved in melanization and is also responsible for the browning of fruits and vegetables. Control of its activity can be carried out using inhibitors, which is interesting in terms of quantitatively understanding the action of these regulators. In the study of the inhibition of the diphenolase activity of tyrosinase, it is intriguing to know the strength and type of inhibition. The strength is indicated by the value of the inhibition constant(s), and the type can be, in a first approximation: competitive, non-competitive, uncompetitive and mixed. In this work, it is proposed to calculate the degree of inhibition (iD), varying the concentration of inhibitor to a fixed concentration of substrate, L-dopa (D). The non-linear regression adjustment of iD with respect to the initial inhibitor concentration [I]0 allows for the calculation of the inhibitor concentration necessary to inhibit the activity by 50%, at a given substrate concentration (IC50), thus avoiding making interpolations between different values of iD. The analytical expression of the IC50, for the different types of inhibition, are related to the apparent inhibition constant (KIapp). Therefore, this parameter can be used: (a) To classify a series of inhibitors of an enzyme by their power. Determining these values at a fixed substrate concentration, the lower IC50, the more potent the inhibitor. (b) Checking an inhibitor for which the type and the inhibition constant have been determined (using the usual methods), must confirm the IC50 value according to the corresponding analytical expression. (c) The type and strength of an inhibitor can be analysed from the study of the variation in iD and IC50 with substrate concentration. The dependence of IC50 on the substrate concentration allows us to distinguish between non-competitive inhibition (iD does not depend on [D]0) and the rest. In the case of competitive inhibition, this dependence of iD on [D]0 leads to an ambiguity between competitive inhibition and type 1 mixed inhibition. This is solved by adjusting the data to the possible equations; in the case of a competitive inhibitor, the calculation of KI1app is carried out from the IC50 expression. The same occurs with uncompetitive inhibition and type 2 mixed inhibition. The representation of iD vs. n, with n=[D]0/KmD, allows us to distinguish between them. A hyperbolic iD vs. n representation that passes through the origin of coordinates is a characteristic of uncompetitive inhibition; the calculation of KI2app is immediate from the IC50 value. In the case of mixed inhibitors, the values of the apparent inhibition constant of meta-tyrosinase (Em) and oxy-tyrosinase (Eox), KI1app and the apparent inhibition constant of metatyrosinase/Dopa complexes (EmD) and oxytyrosinase/Dopa (EoxD), KI2app are obtained from the dependence of iD vs. n, and the results obtained must comply with the IC50 value.  相似文献   

5.
The rotational spectrum of the 1:1 N,N-diethylhydroxylamine-water complex has been investigated using pulsed jet Fourier transform microwave spectroscopy in the 6.5–18.5 GHz frequency region. The most stable conformer has been detected as well as the 13C monosubstituted isotopologues in natural abundance and the 18O enriched water species, allowing to determine the nitrogen nuclear quadrupole coupling constants and the molecular structure in the vibrational ground state. The molecule has a Cs symmetry and the water lies in the bc symmetry plane forming two hydrogen bonds with the NOH frame with length: dHOH·NOH = 1.974 Å and dH2O·HON = 2.096 Å. From symmetry-adapted perturbation theory calculations coupled to atoms in molecule approach, the corresponding interaction energy values are estimated to be 24 and 13 kJ·mol1, respectively. The great strength of the intermolecular interaction involving the nitrogen atom is in agreement with the high reactivity of hydroxylamine compounds at the nitrogen site.  相似文献   

6.
In the hydrochloride of a pyrazolyl-substituted acetylacetone, the chloride anion is hydrogen-bonded to the protonated pyrazolyl moiety. Equimolar co-crystallization with tetrafluorodiiodobenzene (TFDIB) leads to a supramolecular aggregate in which TFDIB is situated on a crystallographic center of inversion. The iodine atom in the asymmetric unit acts as halogen bond donor, and the chloride acceptor approaches the σ-hole of this TFDIB iodine subtending an almost linear halogen bond, with Cl···I = 3.1653(11) Å and Cl···I–C = 179.32(6)°. This contact is roughly orthogonal to the N–H···Cl hydrogen bond. An analysis of the electron density according to Bader’s Quantum Theory of Atoms in Molecules confirms bond critical points (bcps) for both short contacts, with ρbcp = 0.129 for the halogen and 0.321 eÅ3 for the hydrogen bond. Our halogen-bonded adduct represents the prototype for a future class of co-crystals with tunable electron density distribution about the σ-hole contact.  相似文献   

7.
Deuterium isotope effects on acid–base equilibrium have been investigated using a combined path integral and free-energy perturbation simulation method. To understand the origin of the linear free-energy relationship of ΔpKa=pKaD2OpKaH2O versus pKaH2O, we examined two theoretical models for computing the deuterium isotope effects. In Model 1, only the intrinsic isotope exchange effect of the acid itself in water was included by replacing the titratable protons with deuterons. Here, the dominant contribution is due to the difference in zero-point energy between the two isotopologues. In Model 2, the medium isotope effects are considered, in which the free energy change as a result of replacing H2O by D2O in solute–solvent hydrogen-bonding complexes is determined. Although the average ΔpKa change from Model 1 was found to be in reasonable agreement with the experimental average result, the pKaH2O dependence of the solvent isotope effects is absent. A linear free-energy relationship is obtained by including the medium effect in Model 2, and the main factor is due to solvent isotope effects in the anion–water complexes. The present study highlights the significant roles of both the intrinsic isotope exchange effect and the medium solvent isotope effect.  相似文献   

8.
Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the nπ*S1 and the higher-lying ππ*T2 states cross, at which point the spin-orbit coupling exceeding 10 cm1 allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films.  相似文献   

9.
10.
Let G be a simple graph with the vertex set V={v1,,vn} and denote by dvi the degree of the vertex vi. The modified Sombor index of G is the addition of the numbers (dvi2+dvj2)1/2 over all of the edges vivj of G. The modified Sombor matrix AMS(G) of G is the n by n matrix such that its (i,j)-entry is equal to (dvi2+dvj2)1/2 when vi and vj are adjacent and 0 otherwise. The modified Sombor spectral radius of G is the largest number among all of the eigenvalues of AMS(G). The sum of the absolute eigenvalues of AMS(G) is known as the modified Sombor energy of G. Two graphs with the same modified Sombor energy are referred to as modified Sombor equienergetic graphs. In this article, several bounds for the modified Sombor index, the modified Sombor spectral radius, and the modified Sombor energy are found, and the corresponding extremal graphs are characterized. By using computer programs (Mathematica and AutographiX), it is found that there exists only one pair of the modified Sombor equienergetic chemical graphs of an order of at most seven. It is proven that the modified Sombor energy of every regular, complete multipartite graph is 2; this result gives a large class of the modified Sombor equienergetic graphs. The (linear, logarithmic, and quadratic) regression analyses of the modified Sombor index and the modified Sombor energy together with their classical versions are also performed for the boiling points of the chemical graphs of an order of at most seven.  相似文献   

11.
The subject of research is forty dimers formed by imidazol-2-ylidene (I) or its derivative (IR2) obtained by replacing the hydrogen atoms in both N-H bonds with larger important and popular substituents of increasing complexity (methyl = Me, iso-propyl = iPr, tert-butyl = tBu, phenyl = Ph, mesityl = Mes, 2,6-diisopropylphenyl = Dipp, 1-adamantyl = Ad) and fundamental proton donor (HD) molecules (HF, HCN, H2O, MeOH, NH3). While the main goal is to characterize the generally dominant C⋯H-D hydrogen bond engaging a carbene carbon atom, an equally important issue is the often omitted analysis of the role of accompanying secondary interactions. Despite the often completely different binding possibilities of the considered carbenes, and especially HD molecules, several general trends are found. Namely, for a given carbene, the dissociation energy values of the IR2HD dimers increase in the following order: NH3< H2O < HCN ≤ MeOH ≪ HF. Importantly, it is found that, for a given HD molecule, IDipp2 forms the strongest dimers. This is attributed to the multiplicity of various interactions accompanying the dominant C⋯H-D hydrogen bond. It is shown that substitution of hydrogen atoms in both N-H bonds of the imidazol-2-ylidene molecule by the investigated groups leads to stronger dimers with HF, HCN, H2O or MeOH. The presented results should contribute to increasing the knowledge about the carbene chemistry and the role of intermolecular interactions, including secondary ones.  相似文献   

12.
Methylfurans are methylated aromatic heterocyclic volatile organic compounds and primary or secondary pollutants in the atmosphere due to their capability to form secondary organic aerosols in presence of atmospheric oxidants. There is therefore a significant interest to monitor these molecules in the gas phase. High resolution spectroscopic studies of methylated furan compounds are generally limited to pure rotational spectroscopy in the vibrational ground state. This lack of results might be explained by the difficulties arisen from the internal rotation of the methyl group inducing non-trivial patterns in the rotational spectra. In this study, we discuss the benefits to assign the mm-wave rotational-torsional spectra of methylfuran with the global approach of the BELGI-Cs code compared to local approaches such as XIAM and ERHAM. The global approach reproduces the observed rotational lines of 2-methylfuran and 3-methylfuran in the mm-wave region at the experimental accuracy for the ground vt=0 and the first torsional vt=1 states with a unique set of molecular parameters. In addition, the V3 and V6 parameters describing the internal rotation potential barrier may be determined with a high degree of accuracy with the global approach. Finally, a discussion with other heterocyclic compounds enables the study of the influence of the electronic environment on the hindered rotation of the methyl group.  相似文献   

13.
For decades, sulfur has remained underdetected in molecular form within the dense interstellar medium (ISM), and somewhere a molecular sulfur sink exists where it may be hiding. With the discovery of hydrogen peroxide (HOOH) in the ISM in 2011, a natural starting point may be found in sulfur-bearing analogs that are chemically similar to HOOH: hydrogen thioperoxide (HOSH) and hydrogen persulfide (HSSH). The present theoretical study couples the accuracy in the anharmonic fundamental vibrational frequencies from the explicitly correlated coupled cluster theory with the accurate rotational constants provided by canonical high-level coupled cluster theory to produce rovibrational spectra for use in the potential observation of HOSH and HSSH. The ν6 mode for HSSH at 886.1 cm1 is within 0.2 cm1 of the gas-phase experiment, and the B0 rotational constant for HSSH of 6979.5 MHz is within 9.0 MHz of the experimental benchmarks, implying that the unknown spectral features (such as the first overtones and combination bands) provided herein are similarly accurate. Notably, a previous experimentally-attributed 2ν1 mode, at 7041.8 cm1, has been reassigned to the ν1+ν5 combination band based on the present work’s ν1+ν5 value at 7034.3 cm1. The most intense vibrational transitions for each molecule are the torsions, with HOSH having a more intense transition of 72 km/mol compared to HSSH’s intensity of 14 km/mol. Furthermore, HOSH has a larger net dipole moment of 1.60 D compared to HSSH’s 1.15 D. While HOSH may be the more likely candidate of the two for possible astronomical observation via vibrational spectroscopy due to the notable difference in their intensities, both HSSH and HOSH have large enough net dipole moments to be detectable by rotational spectroscopy to discover the role these molecules may have as possible molecular sulfur sinks in the dense ISM.  相似文献   

14.
Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young’s modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.  相似文献   

15.
Dye aggregates are of interest for excitonic applications, including biomedical imaging, organic photovoltaics, and quantum information systems. Dyes with large transition dipole moments (μ) are necessary to optimize coupling within dye aggregates. Extinction coefficients (ε) can be used to determine the μ of dyes, and so dyes with a large ε (>150,000 M−1cm−1) should be engineered or identified. However, dye properties leading to a large ε are not fully understood, and low-throughput methods of dye screening, such as experimental measurements or density functional theory (DFT) calculations, can be time-consuming. In order to screen large datasets of molecules for desirable properties (i.e., large ε and μ), a computational workflow was established using machine learning (ML), DFT, time-dependent (TD-) DFT, and molecular dynamics (MD). ML models were developed through training and validation on a dataset of 8802 dyes using structural features. A Classifier was developed with an accuracy of 97% and a Regressor was constructed with an R2 of above 0.9, comparing between experiment and ML prediction. Using the Regressor, the ε values of over 18,000 dyes were predicted. The top 100 dyes were further screened using DFT and TD-DFT to identify 15 dyes with a μ relative to a reference dye, pentamethine indocyanine dye Cy5. Two benchmark MD simulations were performed on Cy5 and Cy5.5 dimers, and it was found that MD could accurately capture experimental results. The results of this study exhibit that our computational workflow for identifying dyes with a large μ for excitonic applications is effective and can be used as a tool to develop new dyes for excitonic applications.  相似文献   

16.
Li-rich and catalytically active γ-LixV2O5 (x = 1.48) was investigated as a cathode for its heterogeneous charge transfer kinetics. Using a specially designed two-electrode system lithium half cell, Butler–Volmer analysis was performed, and Raman spectra were acquired in 18 mV intervals. A direct correlation was observed between the Raman shift of the active modes Ag,Bg, Au, and Bu, and the development of the Faraday current at the working electrode. The Raman intensity and the Raman shift were implemented to replace the current in a Tafel plot used for the analysis of Butler–Volmer kinetics. Striking similarities in the charge transfer proportionality constants α were found for current and Raman-based analysis. The potential of this new method of Raman-aided electrochemical detection at the diffraction limit is discussed.  相似文献   

17.
Mapping microviscosity, temperature, and polarity in biosystems is an important capability that can aid in disease detection. This can be achieved using fluorescent sensors based on a green-emitting BODIPY group. However, red fluorescent sensors are desired for convenient imaging of biological samples. It is known that phenyl substituents in the β position of the BODIPY core can shift the fluorescence spectra to longer wavelengths. In this research, we report how electron-withdrawing (EWG) and -donating (EDG) groups can change the spectral and sensory properties of β-phenyl-substituted BODIPYs. We present a trifluoromethyl-substituted (EWG) conjugate with moderate temperature sensing properties and a methoxy-substituted (EDG) molecule that could be used as a lifetime-based polarity probe. In this study, we utilise experimental results of steady-state and time-resolved fluorescence, as well as quantum chemical calculations using density functional theory (DFT). We also explain how the energy barrier height (Ea) for non-radiative relaxation affects the probe’s sensitivity to temperature and viscosity and provide appropriate Ea ranges for the best possible sensitivity to viscosity and temperature.  相似文献   

18.
Water borane (BH3OH2) and borinic acid (BH2OH) have been proposed as intermediates along the pathway of hydrogen generation from simple reactants: water and borane. However, the vibrational spectra for neither water borane nor borinic acid has been investigaged experimentally due to the difficulty of isolating them in the gas phase, making accurate quantum chemical predictions for such properties the most viable means of their determination. This work presents theoretical predictions of the full rotational and fundamental vibrational spectra of these two potentially application-rich molecules using quartic force fields at the CCSD(T)-F12b/cc-pCVTZ-F12 level with additional corrections included for the effects of scalar relativity. This computational scheme is further benchmarked against the available gas-phase experimental data for the related borane and HBO molecules. The differences are found to be within 3 cm1 for the fundamental vibrational frequencies and as close as 15 MHz in the B0 and C0 principal rotational constants. Both BH2OH and BH3OH2 have multiple vibrational modes with intensities greater than 100 km mol1, namely ν2 and ν4 in BH2OH, and ν1, ν3, ν4, ν9, and ν13 in BH3OH2. Finally, BH3OH2 has a large dipole moment of 4.24 D, which should enable it to be observable by rotational spectroscopy, as well.  相似文献   

19.
With a longer-term goal of addressing the comparative behavior of the aqueous halides F, Cl, Br, and I on the basis of quasi-chemical theory (QCT), here we study structures and free energies of hydration clusters for those anions. We confirm that energetically optimal (H2O)nX clusters, with X = Cl, Br, and I, exhibit surface hydration structures. Computed free energies, based on optimized surface hydration structures utilizing a harmonic approximation, typically (but not always) disagree with experimental free energies. To remedy the harmonic approximation, we utilize single-point electronic structure calculations on cluster geometries sampled from an AIMD (ab initio molecular dynamics) simulation stream. This rough-landscape procedure is broadly satisfactory and suggests unfavorable ligand crowding as the physical effect addressed. Nevertheless, this procedure can break down when n4, with the characteristic discrepancy resulting from a relaxed definition of clustering in the identification of (H2O)nX clusters, including ramified structures natural in physical cluster theories. With ramified structures, the central equation for the present rough-landscape approach can acquire some inconsistency. Extension of these physical cluster theories in the direction of QCT should remedy that issue, and should be the next step in this research direction.  相似文献   

20.
Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller–Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers’ stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm1–1700 cm1 and 2300 cm1–3400 cm1 in the gas phase and 600 cm1–1800 cm1 and 2200 cm1–3400 cm1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm1–1700 cm1 and 2300 cm1–3300 cm1 for the gas phase and one broad absorption region in the solid state between 700 cm1 and 3100 cm1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号