首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of the configurational force approach in crack problems is often used in order to establish fracture criteria that are adapted to a specific material behaviour. The tangential component of the calculated vectorial quantity that acts at the crack tip is a generalisation of the conventional J-integral and can be interpreted as the energy release rate when the crack extends in this direction. However, the interpretation of nontangential components in the same way, and hence the interpretation of this vectorial quantity as the crack driving force, is not consistent with established kink criteria in the special case of linear elastic fracture mechanics. As a classical example, an in-plane loaded crack in a homogeneous isotropic linear elastic material is considered under the small strain assumption. Using the expansion of stress intensity factors at the extended crack tip, nontangential components of the configurational force can be interpreted as sensitivities to crack deflection. This perspective has the potential of generalisation which can be applied to more complex situations in order to study the interplay between mechanical fields in the vicinity of the crack tip and the microstructural influence within the process zone. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Due to the growing interest in determining the macroscopic material response of inhomogeneous materials, computational methods are becoming increasingly concerned with the application of homogenization techniques. In this work, a two-scale classical homogenization of an electro-mechanically coupled material using a FE2-approach is discussed. We explicitly formulated the homogenized coefficients of the elastic, piezoelectric and dielectric tensors for small strain as well as the homogenized remanent strain and remanent polarization. In the homogenization different representative volume elements (RVEs), which capture the micro-structure of the inhomogeneous material, are used to represent the macroscopic material response. Two different schemes are considered. In the first case, domain wall movement is not allowed, but in the second case the movement of the domain walls is taken into account using thermodynamic considerations. Later this technique is used to determine the macroscopic and microscopic configurational forces on defects [2]. These defect situations include the driving force on a crack tip. The effect of the applied electric field on configurational forces at the crack tip is investigated. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Singularities are studied of the elastic and electric fields near a tip of a crack on the interface of two piezoelectric bodies. An analog of the Griffith formula is obtained for the increment of the potential energy of deformation due to development of a rectilinear crack. The external electrical forces result in the decrease of the energy release rate which explains an experimentally-known possibility of controlling the fracture process by some additional electric fields.  相似文献   

4.
Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezoelectric media under various boundary conditions on the crack surfaces. The singularity exponents form the spectrum of a certain polynomial pencil, and although explicit formulas are not available, this spectrum is described completely though. The mathematical results apply to problems in fracture mechanics. In this way the Griffith formulas are obtained for increments of energy functionals due to the growth of the crack, and the notion of energy release matrix is introduced. Normalization conditions for bases of singular solutions are proposed to adapt them to energy, stress, and deformation fracture criteria. Connections between these bases are determined, and additional properties of the deformation basis related to the notion of electric surface enthalpy are established. Bibliography: 44 titles. Dedicated to Vsevolod Alekseevich Solonnikov Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 362, 2008, pp. 241–271.  相似文献   

5.
A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals is considered. The Fourier transform technique is used to solve a moving crack problem under the action of antiplane shear and inplane electric field. Full elastic stresses of phonon and phason fields and electric fields are derived for a crack running with constant speed in the periodic plane. Obtained results show that the coupled elastic fields inside piezoelectric quasicrystals depend on the speed of crack propagation, and exhibit the usual square-root singularity at the moving crack tip. Electric field and phason stresses do not have singularity and electric displacement and phonon stresses have the inverse square-root singularity at the crack tip for a permeable crack. The field intensity factors and energy release rates are obtained in closed form. The crack velocity does not affect the field intensity factors, but alters the dynamic energy release rate. Bifurcation angle of a moving crack in a 1D hexagonal piezoelectric quasicrystal is evaluated from the viewpoint of energy balance. Obtained results are helpful to better understanding crack advance in piezoelectric quasicrystals.  相似文献   

6.
This paper is concerned with the diffraction problem in a transversely isotropic piezoelectric medium by a half-plane. The half-plane obstacle considered here is a semi-infinite slit, or a crack; both its surfaces are traction free and electric absorbent screens. In a generalized sense, we are dealing with the Sommerfeld problem in a piezoelectric medium.¶The coupled diffraction fields between acoustic wave and electric wave are excited by both incident acoustic wave as well as incident electric wave; and the sound soft and electric "blackness" conditions on the screens are characterized by a system of simultaneous Wiener-Hopf equations. Closed form solutions are sought by employing special techniques. Some interesting results have been obtained, such as mode conversions between acoustic wave and electric wave, novel diffraction patterns in the scattering fields, and the effect of electroacoustic head wave, as well as of surface wave-Bleustein-Gulyaev wave.¶Unlike the classical Sommerfeld problem, in which the only concern is the scattering field of electric wave, the strength of material, e.g. material toughness, is another concern here. From this perspective, relevant dynamic field intensity factors at the crack tip are derived explicitly.  相似文献   

7.
8.
Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.  相似文献   

9.
The two-dimensional problem of a crack in three-dimensional quasicrystals subject to far field loadings is studied. The analysis is based on the generalized Lekhnitskii's formalism. The analytical expressions for both the entire fields and the asymptotic fields near the crack tip are determined. The fracture quantities of quasicrystals, i.e., field intensity factors, energy release rates and so on, is a prerequisite. Numerical results for a Griffith crack under phason loading Mode I and II conditions are poltted. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A piezoelectric fiber/elastic matrix system subjected to axially symmetric mechanical and electric loads is considered. The fiber contains a penny-shaped crack located at its center perpendicularly to the fiber. By using the Fourier and Hankel transforms, the problem is reduced to the solution of an integral equation. Numerical solutions for the crack tip fields are obtained for various crack sizes and different fiber volume fractions. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 3, pp. 301–318, May–June, 2006.  相似文献   

11.
We introduce a consistent variational framework for inelasticity at finite strains, yielding dual balances in physical and material space as the Euler equations. The formulation is employed for the simultaneous usage of configurational forces as both driving forces for crack propagation as well as h-adaptive mesh refinement. The theoretical basis builds upon a global balance of internal and external power, where the mechanical response is exclusively governed by two scalar functions, the free energy function and a dissipation potential. The resulting variational structure is exploited in the context of fracture mechanics and yields evolution equations for internal variables. In the discrete setting, we present a geometry model fully separated from the finite element mesh structure that represents structural changes of the material configuration due to crack propagation. Advanced meshing algorithms provide an optimal discretization at the crack tip. Local and global criteria are obtained via error estimators based on configurational forces being interpreted as indicators of an energetic misfit due to an insufficient discretization. The numerical handling is decomposed into a staggered algorithm scheme for the dual set of equilibrium equations in material and physical space and efficient mesh generation tools. Exemplary numerical examples are considered to illustrate the method and to underline the effects of inelastic material behaviour in the presented context. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
利用复变函数方法,通过引入合适的数值保角映射研究了横观各向同性压电材料中正三角形孔口快速传播裂纹的反平面剪切问题,并在电非渗透型与电渗透型两种边界条件下,结合柯西积分,导出了力-电耦合作用下以速度v传播时的Ⅲ型裂纹的动态应力强度因子和电位移强度因子的解析解.最后,考虑面内电载荷和面外机械载荷共同作用,分析了三角形孔尺寸、裂纹尺寸、外载变化对裂尖场强度因子的影响.  相似文献   

13.
B. N. Rao  M. Kuna 《PAMM》2008,8(1):10233-10234
This paper presents domain form of interaction integrals based on three independent formulations for computation of stress intensity factors and electric displacement intensity factor for cracks in functionally graded piezoelectric materials. Each of the formulation differs in the way auxiliary fields are imposed in the evaluation of interaction integral and each of them results in a consistent form of interaction integral in the sense that extra terms naturally appears in their derivation to compensate for the difference in the chosen crack tip asymptotic fields of homogeneous and functionally graded piezoelectric medium. The additional terms play an important role of ensuring domain independence of the presented interaction integrals. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A numerical scheme is presented to predict crack trajectories in two dimensional components. First a relation between the curvature in mixed–mode crack propagation and the corresponding configurational forces is derived, based on the principle of maximum dissipation. With the help of this, a numerical scheme is presented which is based on a predictor–corrector method using the configurational forces acting on the crack together with their derivatives along real and test paths. With the help of this scheme it is possible to take bigger than usual propagation steps, represented by splines. Essential for this approach is the correct numerical determination of the configurational forces acting on the crack tip. The methods used by other authors are shortly reviewed and an approach valid for arbitrary non–homogenous and non–linear materials with mixed–mode cracks is presented. Numerical examples show, that the method is a able to predict the crack paths in components with holes, stiffeners etc. with good accuracy. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The growth and branching of sharp cracks in ideal single crystals are investigated. Neuber-Novozhilov force and deformation criteria are proposed for the branching of sharp cracks; these criteria describe the brittle, quasibrittle, quasiductile and ductile behaviour of materials on fracture. For internal cracks, simple relations are obtained that describe the branching of cracks when the Coulomb-Mohr single-crystal theoretical strength curves are known for a generalized stress state. The possibility of multiple branching of cracks is found, which is linked to the multiplicity of the eigenvalues on loss of stability of the system. It is established that, for ideal single crystals, the principle of local symmetry is satisfied in the vicinity of the crack tip if the axis of symmetry of the crystal coincides with the axis of the crack. When there are asymmetrical disturbances of the atomic lattice in the vicinity of the crack tip, or when the axis of symmetry of the single crystal does not coincide with the crack axis, the principle of local symmetry is not satisfied.  相似文献   

16.
Today, the local approach to fracture is widely applied to simulate the failure of specimens. For ductile damage processes the Gurson-Tvergaard-Needleman model is the quasi-standard. In the last time non-local extensions allowed a mesh-size independent simulation of crack growth. However, most publications dealing with this subject focus upon the convergence regarding global quantities such as the load-displacement relation. Minor attention is paid to the fields directly at the crack tip. Correspondingly, the interrelationship between the intrinsic length of the model and relevant microscopic damage processes at the crack tip is only partly established until now. In the present study the crack propagation is simulated for an implicitly gradient enriched GTN-model within a boundary layer in order to overcome influences of the specimen geometry. The different stages of damage evolution are resolved by a fine mesh. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Ice shelves are important elements of the climate system and sensitive to climate changes. The disintegration of large Antarctic ice shelves is the focus of this fracture mechanical analysis. Ice is a complex material which, depending on the context, can be seen as a viscous fluid or as an elastic solid. A fracture event usually occurs on a rather short time scale, thus the elastic response is important and linear elastic fracture mechanics can be used. The investigation of the stress intensity factor as a measure of crack tip loading is based on a 2-dimensional analysis of a single crack with a mode-I type load and additional body loads. This investigation is performed using configurational forces. Depth dependent density and temperature profiles are considered. The relevant parameters are obtained by literature, remote sensing data analysis and modeling of the ice dynamics. The criticality of wet surface cracks is investigated. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
具有抛物线边界的二维弹性介质的Green函数   总被引:2,自引:1,他引:1  
文章求解了具有抛物线边界的二维弹性介质的两种Green函数,一种是自由边界问题,另一种是刚性边界问题。我们还求得了当抛物线边界退化成半无限裂纹或半无限刚性裂纹时裂纹尖端的奇异场,得到了集中力作用于边界的基本解,这个基本解使得我们可以通过沿边界积分确定任意分布荷载的弹性解.  相似文献   

19.
A nonlinear differential kinetic model describing dynamical behaviours of an atom at a fatigue crack tip is developed in this paper. It is assumed that the forces acted on this atom by its surrounding atoms consist of the following three components: (1) an elastic restoring force governed by Leonard-Jones potential, which describes the elastic interaction between atoms; (2) a nonlinear damping force proportional to its velocity through a linear function of its displacement as a coefficient that empirically simulates the energy loss from the crack tip to its surroundings; (3) an external remote driving force to represent thermally activated energy supplied to the crack tip from the surroundings. Based on these assumptions of the interaction forces between the atoms around the crack tip, a nonlinear dynamic equation describing the motion of the atom at a crack tip using the Newton’s second principle is derived. For a periodic external force and a random one influenced by parameters omitted, deterministic and a stochastic analyses on the dynamic equation obtained above are completed. Based on the theories of the Hopf bifurcation, global bifurcation and stochastic bifurcation, the extent and some possible implications of the existence of atomic-scale chaotic and stochastic bifurcative motions involving the fracture behaviour of actual materials are systematically and qualitatively discussed and the extreme sensitivity of chaotic motions to minute changes in initial conditions is explored. As demonstrated in the paper, chaotic behaviour may be observed in the case of a larger amplitude of the driving force and a smaller damping constant. The white noise introduced in the atomistic motion process may leads to a drift of the divergence point of the nonlinear stochastic differential kinetic system in contrast to the homoclinic divergence of the nonlinear deterministic differential kinetic system.  相似文献   

20.
The Wiener-Hopf technique is applied to the problem of a half-planewith a crack perpendicular to its edge. A closed solution isobtained giving the stress and displacement fields in the formof eigenfunction expansions, valid over the whole region, exceptthe neighbourhood of the tip of the crack. The behaviour inthis region is obtained by an asymptotic technique. The coefficientsof the expansions involve a generalized factorial function,and a method for the computation of this function is given,thus enabling numerical values of the stresses and displacementsto be obtained for the given cases of stretching and bendingthe half-plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号