首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the elastic buckling of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations, the equilibrium and stability equations are derived using the Sander’s assumption. Resulting equations are employed to obtain the closed-form solution for the critical buckling loads. The results show that the inhomogeneity parameter and geometry of shell significantly affect the critical buckling loads. The analytical results are compared and validated using the finite element method.  相似文献   

2.
In this paper, the free vibration of a two-dimensional functionally graded circular cylindrical shell is analyzed. The equations of motion are based on the Love’s first approximation classical shell theory. The spatial derivatives of the equations of motion and boundary conditions are discretized by the methods of generalized differential quadrature (GDQ) and generalized integral quadrature (GIQ). Two kinds of micromechanics models, viz. Voigt and Mori–Tanaka models are used to describe the material properties. To validate the results, comparisons are made with the solutions for FG cylindrical shells available in the literature. The results of this study show that the natural frequency of the material can be modified in order to meet the expected results through manipulation of the constituent volume fractions. A comprehensive comparison is then drawn between ordinary and 2-D FG cylindrical shells.  相似文献   

3.
Buckling and vibration analysis of functionally graded magneto-electro-thermo-elastic (FGMETE) circular cylindrical shell are carried out in the present work. The Hamilton principle, higher order shear deformation theory, constitutive equation considering coupling effect between mechanical, electric, magnetic, thermal are considered to derive the equations of motion and distribution of electrical potential, magnetic potential along the thickness direction of FGMETE circular cylindrical shell. The influences of various external loads, such as axis force, temperature difference between the bottom and top surface of shell, surface electric voltage and magnetic voltage, on the buckling response of FGMETE circular cylindrical shell are investigated. The natural frequency obtained by present method is compared with results in open literature and a good agreement is obtained.  相似文献   

4.
This paper presents the report of an investigation into thermoelastic vibration and buckling characteristics of the functionally graded piezoelectric cylindrical, where the functionally graded piezoelectric cylindrical shell is made from a piezoelectric material having gradient change along the thickness, such as piezoelectricity and dielectric coefficient et al. Here, utilizing Hamilton’s principle and the Maxwell equation with a quadratic variation of the electric potential along the thickness direction of the cylindrical shells and the first-order shear deformation theory, and taking into account both the direct piezoelectric effect and the converse piezoelectric effect, the thermoelastic vibration and buckling characteristics of functionally graded piezoelectric cylindrical shells composed of BaTiO3/PZT − 4, BaTiO3/PZT − 5A and BaTiO3/PVDF are, respectively, calculated. The effects of material composition (volume fraction exponent), thermal loading, external voltage applied and shell geometry parameters on the free vibration characteristics are described, and the axial critical load, critical temperature and critical control voltage are obtained.  相似文献   

5.
A theoretical model is developed to study the dynamic stability and nonlinear vibrations of the stiffened functionally graded (FG) cylindrical shell in thermal environment. Von Kármán nonlinear theory, first-order shear deformation theory, smearing stiffener approach and Bolotin method are used to model stiffened FG cylindrical shells. Galerkin method and modal analysis technique is utilized to obtain the discrete nonlinear ordinary differential equations. Based on the static condensation method, a reduction model is presented. The effects of thermal environment, stiffeners number, material characteristics on the dynamic stability, transient responses and primary resonance responses are examined.  相似文献   

6.
An approximate analytical method allowing one to efficiently solve, to a preassigned accuracy, contact problems for materials with properties arbitrarily varying in depth is developed. Its possibilities are illustrated with the example of torsion of an elastic half-space, having a coating inhomogeneous across its thickness, by a circular stamp. All the results obtained are rigorously substantiated. For the approximate solutions constructed, their error is analyzed. The asymptotic properties of the solutions are investigated. The cases of a nonmonotonic change in the elastic properties are considered. In particular, the analytical solutions are examined in the case where the variation gradient of the elastic properties changes its sign many times. The results derived allow one to solve the inverse problems of elasticity theory of inhomogeneous media (e.g., the problem on controlling the variation in the elastic properties of a covering across its thickness).  相似文献   

7.
This paper aims to present a unified vibration analysis approach for the four-parameter functionally graded moderately thick doubly-curved shells and panels of revolution with general boundary conditions. The first-order shear deformation theory is used in this formulation. The functionally graded panels structures consists of ceramic and metal which are set to vary continuously in the thickness direction according to the general four-parameter power-law distribution, and six types of power-law distributions are considered for the ceramic volume fraction. The admissible function of the FG panels and shells of revolution is obtained by the improved Fourier series with the help of the governing equations and the boundary conditions. The solution is obtained by using the variational operation in terms of the unknown expanded coefficients. By a great many numerical examples, the rapid convergence and good reliability and accuracy of the proposed approach are validated. A variety of new results for vibration problems of the FG doubly-curved shells and panels with different elastic restraints, geometric and material parameters are presented. The effects of the elastic restraint parameters, power-law exponent, circumference angle and power-law distributions on the free vibration characteristic of the panels are also presented, which can be served as benchmark data in the research and the actual production process.  相似文献   

8.
Due to many applications of spherical shells on a circular planform such as the nose of the plane and spacecraft and caps of pressurized cylindrical tanks, in this article, free vibration analysis of a thin functionally graded shallow spherical cap under a thermal load is considered. A decoupling technique is employed to analytically solve the equations of motion. Introducing some new auxiliary and potential functions as well as using the separation method of variables, the governing equations of the vibrated functionally graded shallow spherical cap were exactly solved. The superiority of the relations is validated by some comparative studies for various types of boundary conditions. Also, thermal buckling phenomenon is considered. Using new different material models, efficiency of the functionally graded materials is investigated when the shell is subjected to a temperature gradient. The effects of various parameters such as radius of curvature, material grading index and thermal gradient are discussed.  相似文献   

9.
This paper considers a functionally graded cantilever beam with different modulus in tension and compression. The beam is subjected to bending loads, including pure bending, shear force at the free end and uniform pressure on the upper lateral, respectively. Its modulus values in tension and compression both change with the thickness coordinate as arbitrary functions, which could bring the beam a broader range of applications in engineering. The problem is treated as a plane stress case and described by Airy stress function. By using semi-inverse method, the elastic solutions for the beam are obtained, which can be easily degenerated into the ones for homogeneous beams. An example is finally presented to show the effect of nonhomogeneous materials with different modulus on the elastic field in a cantilever beam.  相似文献   

10.
This paper aims to investigate the free vibrational analysis of the generally doubly-curved shells of revolution made of functionally graded (FG) materials and constrained with different boundary conditions by means of an efficient, convenient and explicit method based on the Haar wavelet discretization approach. The FG materials of the shell consist of a combination of ceramic and metal, which four parameter power-law distribution functions have chosen for modeling of the smoothly and gradually variation of the material properties in the thickness direction. The theoretical model of the shell is formulated by employing of the first-order shear deformation theory. The rotation and displacement components of each point of the shell are expanded in the form of product of the Haar wavelet series in meridional direction as well as trigonometric series in the circumferential direction. By adding the boundary condition equations to the main system of equations, the constants appeared from the integrating of the Haar wavelet series are satisfied. In addition, with solving the characteristic equation, the vibrational results including the natural frequencies and the corresponding mode shapes are achieved. Then, the present results have been compared with those available in the literature. The results indicate that this method has high accuracy, high reliability and also a higher convergence rate in attaining the frequencies of the FG doubly-curved shells of revolution. Also, the effects of the main parameters such as power-law exponent, geometrical parameters, material distribution profiles and different types of boundary conditions, on the vibrational behavior of the FG doubly-curved shells of revolution, are investigated. Finally, taking into account the effects of geometrical parameters and material distribution profiles, for FG doubly-curved shells of revolution with different boundary conditions such as classic, elastic restraints and their combination, a variety of new frequency studies are provided which can be considered as proof results for further researches in this field.  相似文献   

11.
Based on Giannakopoulos’s 2-D functionally graded material (FGM) contact model, a modified contact model is put forward to deal with impact problem of the functionally graded shallow spherical shell in thermal environment. The FGM shallow spherical shell, having temperature dependent material property, is subjected to a temperature field uniform over the shell surface but varying along the thickness direction due to steady-state heat conduction. The displacement field and geometrical relations of the FGM shallow spherical shell are established on the basis of TimoshenkoMidlin theory. And the nonlinear motion equations of the FGM shallow spherical shell under low velocity impact in thermal environment are founded in terms of displacement variable functions. Using the orthogonal collocation point method and the Newmark method to discretize the unknown variable functions in space and in time domain, the whole problem is solved by the iterative method. In numerical examples, the contact force and nonlinear dynamic response of the FGM shallow spherical shell under low velocity impact are investigated and effects of temperature field, material and geometrical parameters on contact force and dynamic response of the FGM shallow spherical shell are discussed.  相似文献   

12.
In this paper rectangular plates made of functionally graded materials (FGMs) are studied. A two-constituent material distribution through the thickness is considered, varying with a simple power rule of mixture. The equations governing the FGM plates are determined using a variational formulation arising from the Reissner–Mindlin theory. To approximate the problem a simple locking-free Discontinuous Galerkin finite element of non-conforming type is used, choosing a piecewise linear non-conforming approximation for both rotations and transversal displacement. Several numerical simulations are carried out in order to show the capability of the proposed element to capture the properties of plates of various gradings, subjected to thermo-mechanical loads.  相似文献   

13.
14.
The nonlinear in-plane buckling analysis for fixed shallow functionally graded (FG) graphene reinforced composite arches which are subjected to uniform radial load and temperature field is presented in this paper. The arch is composed of multiple graphene platelet reinforced composite (GPLRC) layers with gradient changes of concentration of graphene platelets (GPLs) in each layer. The principle of virtual work, combined with the effective materials properties estimated by the Halpin-Tsai micromechanics model for GPLRC layer, is used to derive the nonlinear buckling equilibrium equations of the FG-GPLRC arch, and then the analytical solutions for the limit point and bifurcation buckling loads are obtained. Comprehensive parametric studies are conducted to explore the effects of various distribution patterns and geometries of GPL, temperature field and arch geometry on the nonlinear equilibrium path and buckling behavior of the composite arch. The influence of temperature on the geometric parameters which are defined as switches between limit point buckling, bifurcation buckling and no buckling are also discussed. It is found that a higher temperature field can increase the buckling loads of the FG-GPLRC arch but reduce the value of the minimum geometric parameters that switching the buckling modes. The results also show that even a small amount of GPLs filler content can increase the buckling loads of the FG-GPLRC arch considerably, and distributing more GPLs near the surface layers is the best pattern to enhance the buckling performances of FG-GPLRC arches.  相似文献   

15.
A hybrid method is proposed to predict the dynamic behavior of functionally graded (FG) plate subjected to a moving mass. The governing equations of motion of FG plate are derived using the Kirchhoff plate theory and Lagrange equation. Improved Rayleigh–Ritz solution is used to treat the spatial partial derivatives. Penalty method is employed to deal with the constraints, and the energy terms due to boundary conditions are included in Lagrange, hence it is not necessary to particularly consider the constraints in the modeling process. And the combination of simple polynomials and trigonometric functions is selected as the admissible functions. The advantage of this improvement in Rayleigh–Ritz method is that it is not needed to find satisfied admissible functions for different boundary conditions while the convergence of the solution is improved. Meanwhile, the method can be used to handle the versatile boundary conditions. Differential quadrature method (DQM) as a step-by-step time integration scheme is employed for discretization of temporal derivatives. The validated results show that the presented method is very reliable and efficient, and its convergence and accuracy are also better compared to finite element method for solving the dynamic problems of FG plate with moving loads (force and mass). Moreover, the influences of material properties and boundary conditions on maximum dynamic deflections are investigated, as well as moving speeds and inertial effects of loads (mass and force). Although only four edge boundary conditions are addressed in the present work, the proposed procedure is applicable for any arbitrary edge boundary conditions.  相似文献   

16.
Two new displacement potential functions are introduced for the general solution of a three-dimensional piezoelasticity problem for functionally graded transversely isotropic piezoelectric solids. The material properties vary continuously along the axis of symmetry of the medium. The four coupled equilibrium equations in terms of displacements and electric potential are reduced to two decoupled sixth- and second-order linear partial differential equations for the potential functions. The obtained results are verified with two limiting cases: (i) a functionally graded transversely isotropic medium, and (ii) a homogeneous transversely isotropic piezoelectric solid. The simplified relations corresponding to the special case of similar variation of material properties are also given. Furthermore, the special cases of axisymmetric problems, exponentially graded piezoelectric media and transversely isotropic piezoelectric media with power law variation are discussed in detail.  相似文献   

17.
We propose a method to study free nonlinear vibrations of multilayer shallow shells with a complicated form of the plan. The mathematical statement of the problem is realized in the frame of a refined firstorder theory of the Tymoshenko type. A distinctive specific feature of the work is the application of the theory of R -functions and variational methods to the determination of eigenfunctions used as the basis in the construction of the required solution of a nonlinear problem. The proposed method is tested, and some new problems are solved. As a result, we constructed the amplitude–frequency dependences for spherical shells with a complicated form of the plan.  相似文献   

18.
Dynamic analysis of multi-directional functionally graded annular plates is achieved in this paper using a semi-analytical numerical method entitled the state space-based differential quadrature method. Based on the three-dimensional elastic theory and assuming the material properties having an exponent-law variation along the thickness, radial direction or both directions, the frequency equations of free vibration of multi-directional functionally graded annular plates are derived under various boundary conditions. Numerical examples are presented to validate the approach and the superiority of this method is also demonstrated. Then free vibration of functionally graded annular plates is studied for different variations of material properties along the thickness, radial direction and both directions, respectively. And the influences of the material property graded variations on the dynamic behavior are also investigated. The multi-directional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material.  相似文献   

19.
This paper considers several finite moving cracks in a functionally graded material subjected to anti-plane deformation. The distributed dislocation technique is used to carry out stress analysis in a functionally graded strip containing moving cracks under anti-plane loading. The Galilean transformation is employed to express the wave equations in terms of coordinates that are attached to the moving crack. By utilizing the Fourier sine transformation technique the stress fields are obtained for a functionally graded strip containing a screw dislocation. The stress components reveal the familiar Cauchy singularity at the location of dislocation. The solution is employed to derive integral equations for a strip weakened by several moving cracks. Numerical examples are provided to show the effects of material properties, the crack length and the speed of the crack propagating upon the stress intensity factor.  相似文献   

20.
In this note microlayered composites having continuously varying macroscopic properties are considered. Such composites are referred to as the functionally graded laminates (FGL). The aim of this contribution is to derive a new averaged model describing the elastic response of the FGL, using the modified tolerance averaging technique, developed for periodic composites and structures by Woźniak and Wierzbicki (2000). (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号