首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < −20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is −63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < −20 dB) reaches 7.28 GHz in the range of 5.92 GHz–9.28 GHz and 11.2 GHz–15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core–shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.  相似文献   

2.
The porous and biomimetic cobalt silicate@diatomite (Co2SiO4@diatomite) was successfully synthesized by a two-step method, including the hydrothermal method and calcination to improve the electromagnetic wave absorption property. Different hydrothermal times were well-tuned for Co2SiO4@diatomite composites with different loadings of Co2SiO4. Interestingly, the Co2SiO4@diatomite composites (6 h, 25 wt%) had a smaller minimum reflection loss. Moreover, the minimum reflection loss (RLmin) could reach −12.03 dB at 16.64 GHz and the matched absorber thickness was 10 mm, while the effective absorption bandwidth (EAB, RL ≤ −10 dB) could be 1.92 GHz. In principle, such findings indicate that Co2SiO4@diatomite nanocomposites could be a promising candidate for high-efficiency microwave absorption capability.  相似文献   

3.
In this paper, we will discuss the excellent broadband microwave absorption behaviors of Cu/CuO/carbon nanosheet composites: traces of copper and oxide embedded in a carbon nano-sheet not only cut down the high permittivity of adsorbs but also induce more interfacial polarization centers. The results showed that at a cracking temperature of 900 °C, the fabricated material has a unique ripple-like structure, which promotes the hierarchical interfacial polarization. The prepared material has a maximum absorption bandwidth of 4.48 GHz at an exceedingly thin thickness of 1.7 mm and a maximum reflection loss of −25.3 dB at a thickness of 2 mm. It is a relatively ideal material for electromagnetic wave absorption.  相似文献   

4.
马明明  杜茹  楚楚 《化学通报》2020,83(1):80-87
本文采用二次电聚合法,在石墨烯修饰铅笔芯电极(G-PEC)表面制备出4,4'-二氨基二苯醚分子印迹聚合物复合聚4,4'-二氨基二苯醚(4,4'-ODL-MIP/P-4,4'-ODL)新型电磁材料,考察了电极有效导电长度、石墨烯浓度、缓冲液pH、4,4'-二氨基二苯醚与功能单体丙烯酰胺的浓度及其浓度比、扫描电位范围、扫描圈数、扫描速率、洗脱时间等各种条件对复合材料荷电量的影响。矢量网络分析仪测试结果显示,所合成的复合材料在12.56GHz处出现-10.57dB的反射损耗,有效电磁波吸收率达到90%;而单一的4,4'-ODL-MIP和石墨烯反射损耗均高于-10dB,有效电磁波吸收率分别仅约为68%和60%,因而复合材料具备良好的吸波性。  相似文献   

5.
Developing high-efficiency electromagnetic (EM) wave absorbing materials with light weight, thin thickness, and wide absorption bandwidth is highly desirable for ever-developing electronic and telecommunication devices. Herein, hierarchical metal–organic framework (MOF)-derived Co/C@V2O3 hollow spheres were designed and synthesized through a facile hydrothermal, precipitation, and pyrolysis method. The composite exhibits both excellent impedance matching and light weight due to the rational combination of hollow V2O3 spheres and porous Co/C. Additionally, multiple components enable a large dielectric and magnetic loss of the composite, giving rise to enhanced EM wave absorption performance with a maximum reflection loss (RL) of −40.1 dB and a broad effective absorption bandwidth (RL < −10 dB) of 4.64 GHz at a small thickness of 1.5 mm. This work provides insights into the design of hierarchical hollow and porous composites as thin and lightweight EM wave absorbers with efficient absorption, which can also be extended to energy storage, catalysis, and sensing.  相似文献   

6.
Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPH, ABTS•+, ROO, and HOCl/OCl reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.  相似文献   

7.
Near-infrared (NIR) photothermal materials hold great promise for use in several applications, particularly in photothermal therapy, diagnosis, and imaging. However, current NIR responsive materials often show narrow absorption bands and low absorption efficiency, and have long response times. Herein, we demonstrate that the NIR absorption of tetrathiafulvalene-based metal–organic frameworks (MOFs) can be tuned by redox doping and using plasmonic nanoparticles. In this work, a MOF containing redox-active tetrathiafulvalene (TTF) units and Dy-carboxylate chains was constructed, Dy-m-TTFTB. The NIR absorption of the as-synthesized Dy-m-TTFTB was further enhanced by Ag+ or I2 oxidation, transforming the neutral TTF into a TTF˙+ radical state. Interestingly, treatment with Ag+ not only generated TTF˙+ radicals, but it also formed Ag nanoparticles (NPs) in situ within the MOF pores. With both TTF˙+ radicals and Ag NPs, Ag NPs@Dy-m-TTFTB was shown to exhibit a wide range of absorption wavelengths (200–1000 nm) and also a high NIR photothermal conversion. When the system was irradiated with an 808 nm laser (energy power of 0.7 W cm−2), Ag NPs@Dy-m-TTFTB showed a sharp temperature increase of 239.8 °C. This increase was higher than that of pristine Dy-m-TTFTB (90.1 °C) or I2 treated I3@Dy-m-TTFTB (213.0 °C).

The photo-response of the redox-active metal–organic framework has been systematically tuned by incorporating plasmonic Ag nanoparticles and tetrathiafulvalene radicals, resulting in efficient near-infrared photothermal conversion materials.  相似文献   

8.
Mycotoxigenic fungi have attracted special attention due to their threat to food security and toxicity to human health. Aqueous extract of Zingiber officinale Roscoe was used as reducing and capping agent for the synthesis of silver (AgNPs), copper (CuNPs), and zinc oxide (ZnONPs) nanoparticles. UV-Visible spectra of the AgNPs, CuNPs, and ZnONPs showed absorption peaks at λmax 416 nm, 472 nm, and 372 nm, respectively. Zeta potential of AgNPs, CuNPs, and ZnONPs were −30.9, −30.4 and −18.4 mV, respectively. ZnONPs showed the highest activity against Aspergillus awamori ZUJQ 965830.1 (ZOI 20.9 mm and MIC 24.7 µg/mL). TEM micrographs of ZnONPs-treated A. awamori showed cracks and pits in the cell wall, liquefaction of the cytoplasmic content, making it less electron-dense. The sporulation and ochratoxin A production of A. awamori was inhibited by ZnONPs in a concentration-dependent pattern. The inhibition percentage of OTA were 45.6, 84.78 and 95.65% for 10, 15, 20 of ZnONPs/mL, respectively.  相似文献   

9.
Carbon nanotubes of high helicity (H-HCNTs, Sample A) have been synthesized in large-scale by pyrolysis of acetylene at 450 °C over Fe nanoparticles derived from coprecipitation/hydrogen reduction method. With controlled introduction of hydrogen during acetylene pyrolysis, CNTs of low helicity (L-HCNTs, Sample B) and worm-like CNTs (Sample C) were obtained in large quantities. The yields of the CNTs products are high, especially that of H-HCNTs (ca. 7474%). The complex permittivity and permeability of Composites A, B, and C that contain Samples A, B and C (30 wt%) were measured in the 2-18 GHz frequency range. Good absorption of electromagnetic wave (reflection loss<−20 dB) was observed in the 7.18-10.68 and 7.5-10.7 GHz range over Composites B and C (2.0-3.0 mm thickness), respectively. Thus, through the suggested route, CNTs can be produced easily and selectively in large quantities. The lightweight materials can be utilized for microwave absorption.  相似文献   

10.
A three-port circulator for optical communication systems comprising a photonic crystal slab made of a magneto-optical material in which an magnetizing element is not required to keep its magnetic domains aligned is suggested for the first time. By maximizing the incorporation of europium to its molecular formula, the magneto-optical material can remain in the saturated magnetic state even in the absence of an external DC magnetic field. Two- and three-dimensional simulations of the device performed with full-wave electromagnetic solvers based on the finite element method demonstrate that, at the 1550 nm wavelength, the insertion loss, isolation, and reflection levels are equal to or better than −1 dB, −14 dB, and −20 dB, respectively. Since its operation does not require an electromagnet or a permanent magnet, the suggested circulator is much more compact, being able to reach footprints in the range of three orders of magnitude smaller, when compared to other circulator designs referred to in the literature and the presented results can be useful for the design of other nonreciprocal devices with reduced dimensions for optical communication systems.  相似文献   

11.
Cannabis sativa L. is an annual herbaceous plant that belongs to the family Cannabinaceae. In this study, the potential use of forty-five cannabinoids, previously identified from Cannabis sativa to alleviate COVID-19 infection via prohibition of crucial SARS-CoV-2 proteins using molecular docking, was examined. In silico studies were performed on three vital enzymes that serve as principle therapeutic targets to prevent SARS-CoV-2 replication. These enzymes are the main protease SARS-CoV-2 MPro, papain-like protease SARS-CoV-2 PLpro and angiotensin-converting enzyme 2 (ACE2). Regarding SARS-CoV-2 MPro, cannabichromanon (32) showed the best fitting within its active centers, followed by cannabinolic acid (22) and cannabinol (21), displaying ∆G of −33.63, −23.24, and −21.60 kcal/mol, respectively. Concerning SARS-CoV-2 PLpro, cannabichromanon (32) followed by cannabinolic acid (22) and cannabicyclolic acid (41) revealed the best binding within its active pockets owing to multiple bond formation with ∆G values of −28.36, −22.81, and −19.89 kcal/mol. Furthermore, cannabichromanon (32), cannabinolic acid (22), and cannabinol (21) showed considerable fitting within the active sites of angiotensin-converting enzyme 2 (ACE2) evidenced by their significant ∆G values that were estimated as −41.77, −31.34, and −30.36 kcal/mol, respectively. ADME/TOPKAT (absorption, distribution, metabolism, excretion, and toxicity) evaluation was performed on the tested cannabinoids to further explore their pharmacokinetics, pharmacodynamics, and toxicity properties. The results indicated the considerable pharmacokinetic, pharmacodynamic, and toxicity properties of cannabinol (21), cannabinolic acid (22), cannabichromanon (32), and cannabicyclolic acid (41) that showed best fitting scores within the active sites of the tested enzymes. Multivariate data analysis revealed that cannabichromanon and cannabinolic acid showed a discriminant nature and hence can be incorporated in pharmaceutical dosage forms to alleviate COVID-19 infection.  相似文献   

12.
When dealing with simple phenols such as caffeic acid (CA) and ferulic acid (FA), found in a variety of plants, it is very important to have control over the most important factors that accelerate their degradation reactions. This is the first report in which the stabilities of these two compounds have been systematically tested by exposure to various different factors. Forced degradation studies were performed on pure standards (trans-CA and trans-FA), dissolved in different solvents and exposed to different oxidative, photolytic and thermal stress conditions. Additionally, a rapid, sensitive, and selective stability-indicating gas chromatographic-mass spectrometric method was developed and validated for determination of trans-CA and trans-FA in the presence of their degradation products. Cis-CA and cis-FA were confirmed as the only degradation products in all the experiments performed. All the compounds were perfectly separated by gas chromatography (GC) and identified using mass spectrometry (MS), a method that additionally elucidated their structures. In general, more protic solvents, higher temperatures, UV radiation and longer storage times led to more significant degradation (isomerization) of both trans-isomers. The most progressive isomerization of both compounds (up to 43%) was observed when the polar solutions were exposed to daylight at room temperature for 1 month. The method was validated for linearity, precision as repeatability, limit of detection (LOD) and limit of quantitation (LOQ). The method was confirmed as linear over tested concentration ranges from 1−100 mg L−1 (r2s were above 0.999). The LOD and LOQ for trans-FA were 0.15 mg L−1 and 0.50 mg L−1, respectively. The LOD and LOQ for trans-CA were 0.23 mg L−1 and 0.77 mg L−1, respectively.  相似文献   

13.
采用静电纺丝技术结合稳定化和碳化处理原位制备了Fe-Ni/C复合纳米纤维, 其平均直径约为215 nm, 所生成的Fe-Ni合金纳米颗粒较均匀地分布在碳基纳米纤维的内部和表面, 且被石墨化碳层所包覆. 以Fe-Ni/C复合纳米纤维为吸收剂、 硅橡胶为基质制备成吸波涂层, 研究了碳化温度对电磁特性和微波吸收性能的影响. 结果表明, 涂层厚度为1.2~2.0 mm、 Fe-Ni/C复合纳米纤维质量分数为5%的吸波涂层表现出优良的微波吸收性能, 在7.4~18 GHz频率范围内的反射损耗均低于-20 dB; 随着复合纳米纤维的碳化温度由800 ℃升高到1200 ℃, 由于阻抗匹配特性的改善, 吸波涂层的微波吸收能力逐步加强, 其最小反射损耗由-22.6 dB降低到-63.0 dB.  相似文献   

14.
Functional carbon nanomaterials have become the stars of many active research fields, such as electronics, energy, catalysis, imaging, sensing and biomedicine. Herein, a facile and one-pot strategy for generating ferromagnetic nanoparticles loaded on N-doped carbon nanosheets(Fe-N-CNS) is presented by salt-assisted high-temperature carbonization of natural silk proteins. Due to their graphitic structures,N-doping and ferromagnetic nanoparticles(FeNx, FeOy, FeCz),...  相似文献   

15.
One- and two-photon characterizations of a series of hetero- and homoleptic [RuL3-n(bpy)n]2+ (n = 0, 1, 2) complexes carrying bipyridine π-extended ligands (L), have been carried out. These π-extended D−π−A−A−π−D-type ligands (L), where the electron donor units (D) are based on diphenylamine, carbazolyl, or fluorenyl units, have been designed to modulate the conjugation extension and the donating effect. Density functional theory calculations were performed in order to rationalize the observed spectra. Calculations show that the electronic structure of the π-extended ligands has a pronounced effect on the composition of HOMO and LUMO and on the metallic contribution to frontier MOs, resulting in strikingly different nonlinear properties. This work demonstrates that ILCT transitions are the keystone of one- and two-photon absorption bands in the studied systems and reveals how much MLCT and LLCT charge transfers play a decisive role on the two-photon properties of both hetero- and homoleptic ruthenium complexes through cooperative or suppressive effects.  相似文献   

16.
Polygoni Vivipari Rhizoma (PVR), the dried root of Polygonum viviparum, has been used as herbal medicine in China for a long time. In the present study, a new method based on multi-step matrix solid-phase dispersion (MSPD), ultrafiltration and high performance liquid chromatography (HPLC) for screening alpha-glucosidase inhibitors (AGIs) from PVR was proposed. First, three different PVR extractions were prepared by multi-step MSPD with 15% methanol, 60% methanol and 100% methanol. Second, the alpha-glucosidase inhibition tests for the three extracts were carried out, and the 60% methanol extraction showed the best activity. Then, the AGIs screening experiment was performed with ultrafiltration and HPLC analysis using the 60% methanol extraction. Seven binding components (quercetin−3−O−vicianoside, quercetin 3−O−neohesperidoside, rutin, hyperoside, quercetin 3−O−glucuronide, luteolin−7−O−neohesperidoside, kaempferol 3−glucuronide) were found. These seven components were further validated as the AGIs by molecular docking analysis. The developed method was a rapid and efficient tool for screening AGIs from PVR, which provided scientific data for the bioactive components study of PVR.  相似文献   

17.
Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials. These materials have potential in applications in porous conductors, electrocatalysts and energy storage devices; however the structure–property relationships pertaining to charge transfer and its quantification are relatively poorly understood. Here, the cofacial Cd(ii)-based MOF [Cd(BPPTzTz)(tdc)]·2DMF (where BPPTzTz = 2,5-bis(4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole, tdc2− = 2,5-thiophene dicarboxylate) exhibits Intervalence Charge Transfer (IVCT) within its three-dimensional structure by virtue of the close, cofacial stacking of its redox-active BPPTzTz ligands. The mixed-valence and IVCT properties are characterised using a combined electrochemical, spectroelectrochemical and computational approach. Single crystal electronic absorption spectroscopy was employed to obtain the solid-state extinction coefficient, enabling the application of Marcus–Hush theory. The electronic coupling constant, Hab, of 145 cm−1 was consistent with the localised mixed-valence properties of both this framework and analogous systems that use alternative methods to obtain the Hab parameter. This work demonstrates the first report of the successful characterisation of IVCT in a MOF material using single crystal electronic absorption spectroscopy and serves as an attractive alternative to more complex methods due to its simplicity and applicability.

Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials.  相似文献   

18.
Both one-pot catalytic conversion of furfural (FAL) to isopropyl levulinate (PL) and carbonization of by-product (humins) for electromagnetic wave absorption are discussed, which provides inspiration that humins can be applied to electromagnetic wave absorption. In the former, phosphotungstic acid (PW) is employed as a homogeneous catalyst to convert FAL to PL via a tandem reaction in one pot, with the formation of a vast amount of humins. With FAL and various intermediates as substrates, it was found that humins was a polymerization product of FAL, furfuryl alcohol (FOL) and furfuryl ester (FE) with furan rings. In addition, the in situ attenuated total reflection infrared (ATR-IR) spectra also provided a basis for the proposed reaction route. In the latter, with the humins as raw material, P species and WO3 doped nano-porous carbon (Humins-700) platform formed after high-temperature annealing is used for electromagnetic wave absorption and manifests desirable absorption performance. The minimum reflection loss (RLmin) value is −47.3 dB at 13.0 GHz with a thickness of 2.0 mm and the effective absorption bandwidth reaches 4.5 GHz (11.2–5.7 GHz).  相似文献   

19.
The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN 16W program. The assignment of the observed bands to the respective normal modes was proposed on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N–H⋯N hydrogen bonds with a R22(8) graph. The stability of the studied molecule was considered using NBO analysis. Electron absorption and the luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts derived from the optical spectra were equal to 9410 cm−1 for the triazole ring and 7625 cm−1 for the pyridine ring.  相似文献   

20.
This work facilitates detection of bivalent copper ion by a simple Schiff base probe QNH based on a quinoxaline−naphthaldehyde framework. The detailed study in absorption spectroscopy and theoretical aspects and crystal study of the probe and probe−copper complex has been discussed. The detection limit of the probe in the presence of Cu2+ is 0.45 µM in HEPES−buffer/acetonitrile (3/7, v/v) medium for absorption study. The reversibility of the probe−copper complex has been investigated by EDTA. The selective visual detection of copper has been established also in gel form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号