首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A material-force-based refinement indicator for adaptive finite element strategies for finite elasto-plasticity is proposed. Starting from the local format of the spatial balance of linear momentum, a dual material counterpart in terms of Eshelby's energy-momentum tensor is derived. For inelastic problems, this material balance law depends on the material gradient of the internal variables. In a global format the material balance equation coincides with an equilibrium condition of material forces. For a homogeneous body, this condition corresponds to vanishing discrete material nodal forces. However, due to insufficient discretization, spurious material forces occur at the interior nodes of the finite element mesh. These nodal forces are used as an indicator for mesh refinement. Assigning the ideas of elasticity, where material forces have a clear energetic meaning, the magnitude of the discrete nodal forces is used to define a relative global criterion governing the decision on mesh refinement. Following the same reasoning, in a second step a criterion on the element level is computed which governs the local h-adaptive refinement procedure. The mesh refinement is documented for a representative numerical example of finite elasto-plasticity. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The vibrations of the stator core of a rotating electrical machine induce acoustic noise. These oscillations of the stator yoke are excited of the force density due to the magnetic field in the air gap. This requires a transient magnetic field analysis coupled with a dynamic mechanical analysis. Coupling these two different physical fields results in a high numerical effort and usually one direction of the interaction is disregarded. This paper presents a method to calculate the vibrations of a stator core under design operating conditions. For this purpose, harmonic electromagnetic excitation forces have been calculated in a linear magnetic field analyses using the finite element method. The resulting forces have been applied to a linear structural dynamic FE model in the frequency domain. The results of the calculations are harmonic velocities specified by amplitude and phase from the structural surface of the stator core. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A numerical model of particle motion in fluid flow under the influence of hydrodynamic and magnetic forces is presented. As computational tool, a flow solver based on the Boundary Element Method is used. The Euler-Lagrange formulation of multiphase flow is considered. In the case of a particle with a magnetic moment in a nonuniform external magnetic field, the Kelvin body force acts on a single particle. The derived Lagrangian particle tracking algorithm is used for simulation of dilute suspensions of particles in viscous flows taking into account gravity, buoyancy, drag, pressure gradient, added mass and magnetophoretic force. As a benchmark test case the magnetite particle motion in cellular flow field of water is computed with and without the action of the magnetic force. The effect of the Kelvin force on particle motion and separation from the main flow is studied for a predefined magnetic field and different values of magnetic flux density. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this work a powerful technique is described which allows the implicit coupling of partitioned solvers in fluid–structure interaction (FSI) problems. The flow under consideration is governed by the Navier–Stokes equations for incompressible viscous fluids and modeled with the finite volume method. The structure is represented by a finite element formulation. The method allows the use of a black box fluid and structural solver because it builds up a reduced order model of the fluid and structural problem during the coupling process. Each solution of the fluid/structural solver in the coupling process can be seen as a sensitivity response of an applied displacement/pressure mode. The applied modes and their responses are used to build up a reduced-order model. The proposed model is used to predict the unsteady flow fields of a particular flow-induced vibrational phenomenon – a fixed cubic rigid body is submerged in an incompressible fluid flow (water), an elastic plate is attached to the rigid body in the centre of the downstream face, and the vortices, which separate from the corners of the rigid body upstream, generate lift forces which excite continuous oscillations of the elastic plate downstream. The computational results show that a fairly good convergence solution is achieved by using the reduced-order model that is based on only a few displacement and stress modes, which largely reduces the computational cost, compared with traditional approaches. At the same time, comparison of the numerical results of the model with available experimental data validates the methodology and assesses its accuracy.  相似文献   

5.
The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model.  相似文献   

6.
Peter Eberhard  Pascal Ziegler 《PAMM》2007,7(1):4010017-4010018
  相似文献   

7.
In order to model unsteady maneuvers in swimming fish, we develop an initial-boundary value problem for a fourth-order hyperbolic partial differential equation in which the fish's body is treated as an inhomogeneous elastic plate. The model is derived from the three-dimensional equations of elastic dynamics, and is essentially a simple variant of the classical Kirchhoff model for a dynamic plate. The model incorporates body forces generating moment to simulate muscle force generation in fish. The initial-boundary value problem is reduced to a beam model in one spatial dimension and formulated computationally using finite differences. Interaction with the surrounding water is represented by nonlinear viscous damping. Two example applications using simple but physically reasonable physiological parameters are presented and interpreted. One models the acceleration from rest to steady swimming, the other a rapid turn from rest.  相似文献   

8.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

9.
The quantitative analysis shows that no theoretical model for 3-d magnetoelastic bodies, in literatures to date, can commonly simulate two kinds of distinct experimental phenomena on magnetoelastic interaction of ferromagnetic structures. This makes it difficult to effectively discribe the magnetoelastic mechanical behavior of structures with complex geometry, such as shells. Therefore, it is a key step for simulating magnetoelastic mechanical characteristics of structures with complex geometry to establish a 3-d model which also can commonly characterize the two distinct experimental phenomena. A theoretical model for three dimension magnetizable elastic bodies, which is commonly suitable for the two kinds of experimental phenomena on magnetoelastic interaction of ferromagnetic plates, is presented by the variational principle for the total energy functional of the coupling system of the 3-d ferromagnetic bodies. It is found that for the case of linear isotropic magnetic materials, the magnetic forces obtained by this model include not only the body magnetic force which is the same as that got from the magnetic dipole model, but also a distribution of the magnetic traction on the surface of the magnetizable body. And the value of the traction is equal to the jumping one of the Faraday electromagnetic stress on the two sides of the surface, which does not appear in any model, such as magnetic dipole model and axiomatic model. Project supported by the National Natural Science Foundation of China( Grant No. 19572031), the National Science Fundation for Outstanding Young Scientiests in China, and a united foundation of the State Education Committee of China and National Natural Science Foundation Committee.  相似文献   

10.
Mathematical model for calculation of the stress-strain behavior of the wound package is presented. It uses the split of the body of cylindrical layers with finite thickness under assumption for orthotropic, linear elastic behavior of the single layers. The numerical results demonstrate, that in certain cases the windings and layers lose their tension forces, where the winding package loses its stability. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The well-known phenomenon of ripples on roads has its modern counterpart in ripple patterns on railroads and polygonization of wheels on state-of-the-art lightrail streetcars. Here we study an idealized mechanical suspension model for the vibrational frequency response of a buggy with a nonrigid body (typically, an aluminium chassis and coach). The finite flexural rigidity of the body is an important novel feature. Since the essential physics is described by only one extra material parameter (viz. the stiffness coefficient), the model retains its basic simplicity and can still be analysed exactly. The dynamics (i.e., the Lagrangian equations of motion) are solved in the frequency domain. The motion on a distorted surface is treated as a nonholonomic constraint. Thus we analytically calculate spectra, e.g., the wheel spectrum. This reveals a new, significant wheel resonance (typically near 30–35 Hz), which is confirmed by means of a novel analysis of the wheel’s lift force (taking care of traction forces). At moderate city speeds this resonance agrees with recently observed characteristic ripple patterns on lightrail tracks, with wavelengths of approximately 10–20 cm (amplitudes of the order of a millimeter), and correspondingly polygonized wheels.  相似文献   

12.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

13.
The Interaction between wind flow and structures plays an important role in the computation of civil engineering application. In case of gravity prestressed membrane roofs, the wind lifting forces may exceed the dead load leading to high amplitude structural oscillations, which interact with the flow field. To investigate the interaction a consistent discretization method based on stabilized space‐time finite elements is applied. The flow field is modeled with the incompressible Reynolds Averaged Navier‐Stokes (RANS) equations with an anisotropic eddy‐viscosity turbulence model. The structural motion is described with the theory for geometrically nonlinear elastic deformation behavior, a strong coupling algorithm for the time‐dependent fluid‐structure interaction is implemented. Two applications show the capability of the turbulence model in representing the anisotropic turbulence structure, the differences in the flow field over a bluff body between two configurations representing a rigid and an elastic membrane roof, discusses the structural responses of the roof at a high Reynolds number. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Summary. Fluid mechanics describes the motion of mass in space under the influence of internal and external forces. The particle model presented in this article is based on this fact. The fluid is subdivided into a finite number of small mass packets, the particles. These mass packets have a finite extension and share all properties with the fluid, except for the restriction that they cannot get deformed and can perform only rigid body motions. The forces acting upon the particles are identical to those acting on a part of a fluid. The exact conservation of mass and, for the case of adiabatic flows, also of entropy is automatically guaranteed by the approach. When the particle size tends to zero, the mean local displacement of the particles converges in the weak sense. In the inviscid case, the resulting flows can be regarded as solutions of the Euler equations. Received February 17, 1995 / Revised version received December 28, 1995  相似文献   

15.
Worldwide, landfills are the most common way to dispose of waste, but have an impact on the environment as a result of harmful gas and leachate production. Estimating the long-term behaviour of a landfill in regard to this gas production and organic degrading, as well as to settlement and waste water production, is of high importance. Therefore, a model has been developed to simulate these processes. This constitutive model is based on the multiphase Theory of Porous Media. The body under investigation consists of an organic and an inorganic phase as well as a liquid and a gas phase. The equations of the model are developed on the basis of a consistent thermo-mechanical approach including the momentum balance for the solid phase and the mixture, the energy balance for the mixture and the mass balance for the gas phase. All interactions between the constituents such as mass transfers, interaction forces and energy fluxes are taken into consideration. The strongly coupled set of partial differential equations is implemented in the finite element code FEAP. The theoretical framework and the results of meantime successfully performed simulation of a real landfill body will be shown. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A nonlinear stability result for a double-diffusive magnetized ferrofluid layer rotating about a vertical axis for stress-free boundaries is derived via generalized energy method. The mathematical emphasis is on how to control the nonlinear terms caused by magnetic body and inertia forces. The result is compared with the result obtained by linear instability theory. The critical magnetic thermal Rayleigh number given by energy theory is slightly less than those given by linear theory and thus indicates the existence of subcritical instability for ferrofluids. For non-ferrofluids, it is observed that the nonlinear critical stability thermal Rayleigh number coincides with that of linear critical stability thermal Rayleigh number. For lower values of magnetic parameters, this coincidence is immediately lost. The effect of magnetic parameter, M3, solute gradient, S1, and Taylor number, TA1, on subcritical instability region have been analyzed. We also demonstrate coupling between the buoyancy and magnetic forces in the nonlinear stability analysis.  相似文献   

17.
Natural convection using a magnetic fluid was studied in a square cavity under the influence of a permanent magnet. The aim was to explore the degree by which heat transfer may be controlled, enhanced or reduced, by investigating a set of different distances of a permanent magnet to the cavity. These distances of the magnet were set such that the cavity was in some cases fully dominated by buoyancy or by the magnetic body force and in other cases partly dominated by either of both body forces in different parts of the fluid. The effect on heat transfer was characterised by an averaged Nusselt number, Rayleigh and magnetic Rayleigh number. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We study the incompressible Navier-Stokes equations with potential body forces on the three-dimensional torus. We show that the normalization introduced in the paper [C. Foias, J.-C. Saut, Linearization and normal form of the Navier-Stokes equations with potential forces, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1) (1987) 1-47], produces a Poincaré-Dulac normal form which is obtained by an explicit change of variable. This change is the formal power series expansion of the inverse of the normalization map. Each homogeneous term of a finite degree in the series is proved to be well-defined in appropriate Sobolev spaces and is estimated recursively by using a family of homogeneous gauges which is suitable for estimating homogeneous polynomials in infinite dimensional spaces.  相似文献   

19.
Eugen Merkel  Andreas Ricoeur 《PAMM》2015,15(1):407-408
The coupling of electric, magnetic and mechanical phenomena may have various reasons. The famous Maxwell equations of electrodynamics describe the interaction of transient magnetic and electric fields. On the constitutive level of dielectric materials, coupling mechanisms are manyfold comprising piezoelectric, magnetostrictive or magnetoelectric effects. Electromagnetically induced specific forces acting at the boundary and within the domain of a dielectric body are, within a continuum mechanics framework, commonly denoted as Maxwell stresses. In transient electromagnetic fields, the Poynting vector gives another contribution to mechanical stresses. First, a system of transient partial differential equations is presented. Introducing scalar and vector potentials for the electromagnetic fields and representing the mechanical strain by displacement fields, seven coupled differential equations govern the boundary value problem, accounting for linear constitutive equations of magnetoelectroelasticity. To reduce the effort of numerical solution, the system of equations is partly decoupled applying generalized forms of Coulomb and Lorenz gauge transformations [1,2]. A weak formulation is given to establish a basis for a finite element solution. The influence of constitutive magnetoelectric coupling on electromagnetic wave propagation is finally demonstrated with a simple one-dimensional example. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Using relations of the geometrically nonlinear theory of thin shells compliant to shear and compression (the six-modal variant), we have written the key equations for determining their initial post-critical state by the finite element method. A specific feature of this model lies in the semidiscretization of the vector of displacements of an elastic body with respect to its variable thickness, based on the Timoshenko–Mindlin kinematic hypotheses, with preservation of the total vector of rotations of a normal to the median surface. We have solved numerically the problem of the stability of a circular plate, clamped over its contour, under the action of radial compressive forces, distributed uniformly along the contour. We have also performed a comparative analysis of the numerical solutions obtained and data known from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号