首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The paper deals with the effect of different stress states on plastic deformations, damage and fracture of ductile materials. To be able to model these effects a continuum damage model has been introduced taking into account the dependence of stress-state on the constitutive equations. The model is based on the introduction of damaged and fictitious undamaged configurations. All parameters appearing in the constitutive equations are stress-state-dependent which can be characterized by the stress intensity, the stress triaxiality and the Lode parameter. Only experiments are not adequate enough to determine all constitutive parameters. Thus, additional series of three-dimensional micro-mechanical simulations of representative volume elements have been performed to get more insight in the complex damage mechanisms. These simulations cover a wide range of stress triaxialities and Lode parameters in tension, shear and compression domains. After all, the results from the micro-mechanical simulations are used to suggest the damage equations and to identify corresponding parameters. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Soft robots are bio-inspired, highly deformable robots with the ability to interact with workpieces in a manner that complements their hard robot counterparts. To develop practical applications and reproducible designs of soft robots, new models are necessary to describe their kinematics and dynamics. In the present work, we describe experimental and numerical investigations of a popular pneumatically-actuated soft continuum arm. These works enable us to derive constitutive relations and develop a rod model for large deformations of the arm that faithfully describes its bending behavior. We show how the resulting non-classical constitutive relation can be defined either through experiments or through quasi-static finite element simulations. With the help of this relation, the resulting rod model can be used to study the dynamics of the soft robot arm in a fast and tractable manner. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
New and explicit anisotropic constitutive equations between the stretching and deviatoric stress tensors for the two- and three-dimensional cases of incompressible polycrystalline materials are presented. The anisotropy is assumed to be driven by an Orientation Distribution Function (ODF). The polycrystal is composed of transversally isotropic crystallites, the lattice orientation of which can be characterized by a single unit vector. The proposed constitutive equations are valid for any frame of reference and for every state of deformation. The basic assumption of this method is that the principle directions of the stretching and of the stress deviator are the same in the isotropic as well as in the anisotropic case. This means that the proposed constitutive laws are able to model the effects of anisotropy only via a change of the fluidity due to a change of the ODF. Such an assumption is justified to guarantee that, besides knowledge of the parameters involved in the isotropic constitutive equation, the anisotropic material response is completely characterized by only one additional parameter, a type of enhancement factor. Explicit comparisons with experimental data are conducted for Ih–ice.  相似文献   

4.
New and explicit anisotropic constitutive equations between the stretching and deviatoric stress tensors for the two- and three-dimensional cases of incompressible polycrystalline materials are presented. The anisotropy is assumed to be driven by an Orientation Distribution Function (ODF). The polycrystal is composed of transversally isotropic crystallites, the lattice orientation of which can be characterized by a single unit vector. The proposed constitutive equations are valid for any frame of reference and for every state of deformation. The basic assumption of this method is that the principle directions of the stretching and of the stress deviator are the same in the isotropic as well as in the anisotropic case. This means that the proposed constitutive laws are able to model the effects of anisotropy only via a change of the fluidity due to a change of the ODF. Such an assumption is justified to guarantee that, besides knowledge of the parameters involved in the isotropic constitutive equation, the anisotropic material response is completely characterized by only one additional parameter, a type of enhancement factor. Explicit comparisons with experimental data are conducted for Ih–ice. Dedicated to Prof. L.W. Morland on the occasion of his 70th birthday Received: July 6, 2004; revised: November 8, 2004  相似文献   

5.
Felix Nagel  Günther Meschke 《PAMM》2007,7(1):4070009-4070010
While for many numerical simulations in geotechnics use of a two-phase model is sufficient, separate consideration of all three phases is mandatory for numerical simulations of partially saturated soils subjected to compressed air. This is a common technique frequently applied for temporary ground support in tunnelling. For the numerical simulation of tunnelling using compressed air, a multiphase model for soft soils is developed, in which the individual constituents of the soil – the soil skeleton, the fluid and the gaseous phase – and their interactions are considered. The three phase model is formulated within the framework of the Theory of Porous Media (TPM), based upon balance equations and constitutive relations for the soil constituents and their mixture. Water is modelled as an incompressible and air as a compressible phase. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Cables are complex components consisting of a multi-layer structure and various materials. The structural setup includes for example conducting wires, isolating shields and protecting sheaths. This leads to several inelastic effects under large deformations like pull-out of wires, delamination of layers or friction between the constituents. The materials used in cables belong to different material classes and consequently show different behavior under load. Elastoplastic behavior has to be expected for metallic wires, whereas polymer layers behave viscoelastically. The combination of these inelastic effects caused by the structure and constituents of cables motivates the inclusion of inelasticity in the material model on a phenomenological level. Since cables are flexible, slender structures, they can be described physically correctly by the theory of Cosserat rods. In this context, the constitutive equations are formulated in terms of the sectional quantities. The related model parameters have to be determined in suitable experiments. As cables undergo large multiaxial deformations in applications, uniaxial experiments are not sufficient for their characterization. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Some segregation results from the practices of organizations, some from specialized communication systems, some from correlation with a variable that is non‐random; and some results from the interplay of individual choices. This is an abstract study of the interactive dynamics of discriminatory individual choices. One model is a simulation in which individual members of two recognizable groups distribute themselves in neighborhoods defined by reference to their own locations. A second model is analytic and deals with compartmented space. A final section applies the analytics to ‘neighborhood tipping.’ The systemic effects are found to be overwhelming: there is no simple correspondence of individual incentive to collective results. Exaggerated separation and patterning result from the dynamics of movement. Inferences about individual motives can usually not be drawn from aggregate patterns. Some unexpected phenomena, like density and vacancy, are generated. A general theory of ‘tipping’ begins to emerge.  相似文献   

8.
The main objective of the present work is the development of a simplified, efficient and easy-to-implement single-phase material model, which is able to describe the essential effects characterising the behaviour of multi-phase saturated materials, such as of intervertebral discs (IVDs). The presented new model mainly focuses on extending a viscoelastic material model in order to not only take the mechanical behaviour of the solid part into account, but also the fluid-flow-dependent behaviour of the material. By applying this model, the complexity and constitutive parameters are reduced, the implementation is more convenient and the experimental investigations can be better supported in comparison to multi-phase material models of IVDs. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A model is constructed to treat the hygroscopic buckling of layered rectangular paper sheets. The sheet is assumed to consist of K layers each of which has a thickness that varies with position. Each layer of the sheet is taken to be rectilinearity orthotropic, and both the constitutive constants and hygroscopic coefficients may vary with position in an individual layer. A set of global constitutive relations is developed and is used to derive the generalized von Karman equations which govern hygroscopic buckling and postbuckling behavior.  相似文献   

10.
Piezoelectric ceramics are often used in active structures for shape and vibration control. Since the operation range is not limited to small signals the nonlinear behaviour of the actuator under high electric loads has to be known. There are several approaches in literature to model the hysteretic effects, each having its assets and drawbacks. When a model is able to reproduce the minor loops of the strain - electric field hysteresis, it often lacks the consideration of stress dependence which is fundamental for actuators attached to elastic structures. On the other hand constitutive models which take into account all ferroelectric and ferroelastic effects are not capable of representing the minor hystereses in acceptable calculation times. In this work a phenomenological constitutive model is verified using the experimental data of an active plate structure. Therefore, the ceramic is characterised under mechanically unconstrained conditions and afterwards attached onto a steel plate. The bonding to the substructure leads to a mechanical stress depending on the actuation state of the ceramic. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Sami Bidier  Wolfgang Ehlers 《PAMM》2014,14(1):575-576
The individual motion of grains in granular material has a strong influence on the macroscopic material behaviour, which is in particular the case for the phenomena of strain localisation in shear zones and justifies the need for techniques that incorporate a micro-macro transition. In this contribution, granular media are investigated in three steps. Firstly, a microscopic particle-based modelling is set up, where individual grains are considered as rigid uncrushable particles while their motion is obtained through Newton's equations of state. The inter-particle contact forces are thereby determined via constitutive contact-force formulations, which have to account for the envisaged material behaviour. The second step is the homogenisation of the obtained particle's displacements and contact forces through a particle-centre-based strategy towards continuum quantities. Therefore, Representative Elementary Volumes (REV) are introduced on the mesoscale and the specific construction of the REV boundary leads to the understanding of granular media as a micropolar continuum. Finally, in order to verify the homogenisation strategy, a continuum based micropolar model is applied to model localisation phenomena and a comparative study of the results is carried out in a qualitative way. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Oscillatory rheometer measurements are used to determine the material parameters of a NEWTONian fluid model, which can be expressed by a linear constitutive relation. However, rheological materials, such as polymer melts, mixture of oils, or food paste, can only be modeled as non-NEWTONian fluids by using non-linear constitutive relations. Since the rheometer measures the energy loss in the induction motor due to shear loading of the viscous material, this can be used as the objective function for a regression analysis. The dissipated energy will be obtained as outlined in [1]. The goal of this work is to explain how to determine the parameters of a non-linear material model by using the energy loss that is measured in a rheometer. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
无粘性土的应力矢量本构模型(Ⅰ)——理论   总被引:1,自引:1,他引:0  
在充分考虑应力的矢量特性基础上,通过将应力矢量的作用效应分解为球应力作用效应与应力比矢量 (偏应力矢量与球应力之比)作用效应的叠加,建立了一个全新的、适用于无粘性土在平面应变和三维条件下的非线性本构模型。该模型可以同时考虑应力的数量和方向变化对变形的影响,既适用于单调静荷作用,也适用于往返动荷作用。  相似文献   

14.
15.
A. V. Shutov  J. Ihlemann 《PAMM》2012,12(1):309-310
A phenomenological model of metal viscoplasticity, which takes combined isotropic, kinematic, and distortional hardening into account, is motivated by a new rheological model. The distinctive advantage of the material model is that any smooth convex saturated form of the yield surface which is symmetric with respect to the recent loading direction can be captured. In particular, an arbitrary sharpening of the saturated yield locus in the loading direction combined with a flattening on the opposite side can be covered. Moreover, the yield locus evolves smoothly and its convexity is guaranteed at each hardening stage. The underlying two-dimensional rheological analogy can be used to provide insight into the main constitutive assumptions. This rheological model is utilized as a guideline for the construction of phenomenological constitutive relations. The distortion of the yield surface is described with the help of a so-called distortional backstress. Thus, 2nd rank tensors are utilized only. The resulting material model is thermodynamically consistent. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
S. Kolling  A. Haufe 《PAMM》2005,5(1):303-304
Reliable prediction of the behaviour of structures made from polymers is a topic under considerable investigation in engineering practice. Especially, if the structure is subjected to dynamic loading, constitutive models considering the mechanical behaviour properly are not available in commercial finite element codes yet. A constitutive model is derived including important phenomena like necking, strain rate dependency, unloading behaviour and damage. In particular, different yield surfaces in compression and tension and strain rate dependent failure, the latter with damage induced erosion, is taken into account. With the present formulation, standard verification tests can be simulated successfully. Also, an elastic damage model can be used to approximate the unloading behaviour of thermoplastics adequately. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
The paper deals with the effect of different stress states on damage and failure behavior of ductile materials. To be able to model these effects a continuum damage model has been proposed taking into account the dependence of the stress intensity, the stress triaxiality and the Lode parameter on the constitutive equations. The model is based on the introduction of damaged and fictitious undamaged configurations. Only experiments are not adequate enough to determine all constitutive parameters. Therefore, additional three-dimensional micro-mechanical simulations of representative volume elements have been performed to get more insight in the complex damage mechanisms. These simulations cover a wide range of different void sizes, void shapes and void distributions. After all, the results from the micro-mechanical simulations are used to propose the damage equations and to identify corresponding parameters. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
聚醚醚酮(简称PEEK)以其优良的性能而广泛应用于高端机械、 核工程和航空等科技领域.为了描述其在应变、应变率和温度3种因素作用下的力学行为,依据PEEK在不同温度下呈现的3种力学状态,在著名的JC(Johnson Cook)本构模型的基础上,提出了针对高分子不同力学状态的分段JC本构模型.与传统JC模型及文献中改进JC模型相比,提出的分段JC模型能够更精确地表征PEEK在中高温下的力学行为,为PEEK在复合材料中的应用和分析奠定了理论基础.  相似文献   

20.
Ahmed Shaban  Rolf Mahnken 《PAMM》2008,8(1):10465-10466
Glassy polymers such as polycarbonate exhibit different behaviours in different loading scenarios, such as tension and compression. For the simulation of these asymmetric effects we present a framework for thermoviscoplastic modelling of polymers at large strains. To this end a flow rule is postulated within a thermodynamic consistent framework in a mixed variant formulation which is decomposed into a sum of weighted stress mode related quantities. The different stress modes are chosen such that they are accessible to individual examination in the laboratory, where tension and compression are typical examples. The characterisation of the stress modes is obtained in the octahedral plane of the deviatoric stress space in terms of the Lode angle, such that stress mode dependent scalar weighting functions can be constructed. Furthermore the numerical implementation of the resulting set of constitutive equations is used in the finite element program ABAQUS to simulate the laser transmission welding process. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号