首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Three isopimarane diterpenes [fladins B (1), C (2), and D (3)] were isolated from the twigs and leaves of Chinese folk medicine, Isodon flavidus. The chemical structures were determined by the analysis of the comprehensive spectroscopic data, and the absolute configuration was confirmed by X-ray crystallographic analysis. The structures of 1–3 were formed from isopimaranes through the rearrangement of ring A by the bond break at C-3 and C-4 to form a new δ-lactone ring system between C-3 and C-9. This structure type represents the first discovery of a natural isopimarane diterpene with an unusual lactone moiety at C-9 and C-10. In the crystal of 1, molecules are linked to each other by intermolecular O-H···O bonds, forming chains along the b axis. Compounds 1–3 were evaluated for their bioactivities against different diseases. None of these compounds displayed cytotoxic activities against HCT116 and A549 cancer cell lines, antifungal activities against Trichophyton rubrum and T. mentagrophytes, or antiviral activities against HIV entry at 20 µg/mL (62.9–66.7) µM. Compounds 1 and 3 did not show antiviral activities against Ebola entry at 20 µg/mL either; only 2 was found to show an 81% inhibitory effect against Ebola entry activity at 20 µg/mL (66.7 µM). The bioactivity evidence suggested that this type of compound could be a valuable antiviral lead for further structure modification to improve the antiviral potential.  相似文献   

2.
The chemical composition and antimicrobial activity of propolis from a semi-arid region of Morocco were investigated. Fifteen compounds, including triterpenoids (1, 2, 7–12), macrocyclic diterpenes of ingol type (3–6) and aromatic derivatives (13–15), were isolated by various chromatographic methods. Their structures were elucidated by a combination of spectroscopic and chiroptical methods. Compounds 1 and 3 are new natural compounds, and 2, 4–6, and 9–11 are newly isolated from propolis. Moreover, the full nuclear magnetic resonance (NMR) assignments of three of the known compounds (2, 4 and 5) were reported for the first time. Most of the compounds tested, especially the diterpenes 3, 4, and 6, exhibited very good activity against different strains of bacteria and fungi. Compound 3 showed the strongest activity with minimum inhibitory concentrations (MICs) in the range of 4–64 µg/mL. The combination of isolated triterpenoids and ingol diterpenes was found to be characteristic for Euphorbia spp., and Euphorbia officinarum subsp. echinus could be suggested as a probable and new plant source of propolis.  相似文献   

3.
The chemical diversity of the approximately 1,200 natural products isolated from red algae of the genus Laurencia, in combination with the wide range of their biological activities, have placed species of Laurencia in the spotlight of marine chemists’ attention for over 60 years. The chemical investigation of the organic (CH2Cl2/MeOH) extracts of Laurencia microcladia and Laurencia obtusa, both collected off the coasts of Tinos island in the Aegean Sea, resulted in the isolation of 32 secondary metabolites, including 23 C15 acetogenins (1–23), 7 sesquiterpenes (24–30) and 2 diterpenes (31 and 32). Among them, six new C15 acetogenins, namely 10-acetyl-sagonenyne (2), cis-sagonenyne (3), trans-thuwalenyne C (4), tinosallene A (11), tinosallene B (12) and obtusallene XI (17), were identified and their structures were elucidated by extensive analysis of their spectroscopic data. Compounds 1–3, 5–11, 13 and 15–32 were evaluated for their antibacterial activity against Staphylococcus aureus and Escherichia coli.  相似文献   

4.
During the screening of novel chemotherapeutic candidates from plants against adult T-cell leukemia/lymphoma, we identified that the extracts of Thuja occidentalis (Cupressaceae) showed potent anti-proliferative activity in MT-1 and MT-2 cells. Therefore, we attempted to isolate the active components from this plant. We isolated and identified 32 compounds (1–32; eight lignans, 18 terpenoids, and six flavonoids) from the extracts of the leaves and cones. Their structures were determined by spectroscopic analysis. Several of the isolated compounds inhibited the growth of both cell lines. Lignans showed more potent activity than other classes of compounds. A comparison of the activities of compounds 1–8 revealed that the presence of a trans-lactone (linkage of C-6 to C-7) correlated with increased activity. Diterpenes showed moderate activity, and the presence of a ketone moiety at the C-7 position correlated with increased activity in compounds 12–21. In addition, biflavones showed moderate activity, and the presence of methoxy functions appeared to influence the activity of these compounds. Several lignans were lead compound of anti-cancer reagent (etoposide). In conclusion, not only lignans, but also diterpenes and/or biflavones, may be promising candidates for the treatment of adult T-cell leukemia/lymphoma.  相似文献   

5.
The fungal strain was isolated from a soil sample collected in Giza province, Egypt, and was identified as Aspergillus ochraceopetaliformis based on phenotypic and genotypic data. The ethyl acetate extract of the fungal strain exhibited promising activity levels against several pathogenic test organisms and through a series of 1H NMR guided chromatographic separations, a new α-pyrone-C-lyxofuranoside (1) along with four known compounds (2–5) were isolated. The planar structure of the new metabolite was elucidated by detailed analysis of its 1D/2D NMR and HRMS/IR/UV spectroscopic data, while the relative configuration of the sugar moiety was determined by a combined study of NOESY and coupling constants data, with the aid of theoretical calculations. The structures of the known compounds—isolated for the first time from A. ochraceopetaliformis—were established by comparison of their spectroscopic data with those in the literature. All isolated fungal metabolites were evaluated for their antibacterial and antifungal activities against six Gram-positive and Gram-negative bacteria as well as against three human pathogenic fungi.  相似文献   

6.
Orbitides are plant-derived small cyclic peptides with a wide range of biological activities. Phytochemical investigation of the whole plants of Dianthus chinensis was performed with the aim to discover new bioactive orbitides. Five undescribed proline-containing orbitides, dianthiamides A–E (1–5), were isolated from a methanolic extract of Dianthus chinensis. Their structures were elucidated by extensive analysis of 1D and 2D NMR and HRESI–TOF–MS as well as ESI–MS/MS fragmentation data. The absolute configuration of the amino acid residues of compounds 1–5 was determined by Marfey’s method. All compounds were tested for their cytotoxic activity, and dianthiamide A (1) exhibited weak activity against A549 cell line with IC50 value of 47.9 μM.  相似文献   

7.
A novel hybrid PKS–NRPS alkaloid, xylarialoid A (1), containing a 13-membered macrocyclic moiety and [5,5,6] fused tricarbocyclic rings, together with ten known cytochalasins (2–11), was isolated from a plant-derived endophytic fungus, Xylaria arbuscula. The chemical structures of all compounds were elucidated using 1D and 2D NMR, HR ESIMS spectroscopic analyses, and electronic circular dichroism (ECD) calculation. Compounds 1–3 and 10 exhibited significant antitumor activities against A549 and Hep G2 cell lines, with IC50 values of 3.6–19.6 μM. In addition, compound 1 showed potent anti-inflammatory activity against LPS-induced nitric oxide (NO) production in macrophage RAW 264.7 cells (IC50, 6.6 μM).  相似文献   

8.
The rapid emergence of drug resistance to the current antimalarial agents has led to the urgent need for the discovery of new and effective compounds. In this work, a series of 5-phenoxy primaquine analogs with 8-aminoquinoline core (7a–7h) was synthesized and investigated for their antimalarial activity against Plasmodium falciparum. Most analogs showed improved blood antimalarial activity compared to the original primaquine. To further explore a drug hybrid strategy, a conjugate compound between tetraoxane and the representative 5-phenoxy-primaquine analog 7a was synthesized. In our work, the hybrid compound 12 exhibited almost a 30-fold increase in the blood antimalarial activity (IC50 = 0.38 ± 0.11 μM) compared to that of primaquine, with relatively low toxicity against mammalian cells (SI = 45.61). Furthermore, we found that these 5-phenoxy primaquine analogs and the hybrid exhibit significant heme polymerization inhibition, an activity similar to that of chloroquine, which could contribute to their improved antimalarial activity. The 5-phenoxy primaquine analogs and the tetraoxane hybrid could serve as promising candidates for the further development of antimalarial agents.  相似文献   

9.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

10.
Traditional medicinal plants contain a variety of bioactive natural products including cysteine-rich (Cys-rich) antimicrobial peptides (AMPs). Cys-rich AMPs are often crosslinked by multiple disulfide bonds which increase their resistance to chemical and enzymatic degradation. However, this class of molecules is relatively underexplored. Herein, in silico analysis predicted 80–100 Cys-rich AMPs per species from three edible traditional medicinal plants: Linum usitatissimum (flax), Trifolium pratense (red clover), and Sesamum indicum (sesame). Bottom-up proteomic analysis of seed peptide extracts revealed direct evidence for the translation of 3–10 Cys-rich AMPs per species, including lipid transfer proteins, defensins, α-hairpinins, and snakins. Negative activity revealed by antibacterial screening highlights the importance of employing a multi-pronged approach for AMP discovery. Further, this study demonstrates that flax, red clover, and sesame are promising sources for further AMP discovery and characterization.  相似文献   

11.
Kınkor (Ferulago stellata) is Turkish medicinal plant species and used in folk medicine against some diseases. As far as we know, the data are not available on the biological activities and chemical composition of this medicinal plant. In this study, the phytochemical composition; some metabolic enzyme inhibition; and antidiabetic, anticholinergic, and antioxidant activities of this plant were assessed. In order to evaluate the antioxidant activity of evaporated ethanolic extract (EEFS) and lyophilized water extract (WEFS) of kınkor (Ferulago stellata), some putative antioxidant methods such as DPPH· scavenging activity, ABTS•+ scavenging activity, ferric ions (Fe3+) reduction method, cupric ions (Cu2+) reducing capacity, and ferrous ions (Fe2+)-binding activities were separately performed. Furthermore, ascorbic acid, BHT, and α-tocopherol were used as the standard compounds. Additionally, the main phenolic compounds that are responsible for antioxidant abilities of ethanol and water extracts of kınkor (Ferulago stellata) were determined by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Ethanol and water extracts of kınkor (Ferulago stellata) demonstrated effective antioxidant abilities when compared to standards. Moreover, ethanol extract of kınkor (Ferulago stellata) demonstrated IC50 values of 1.772 μg/mL against acetylcholinesterase (AChE), 33.56 ± 2.96 μg/mL against α-glycosidase, and 0.639 μg/mL against α-amylase enzyme respectively.  相似文献   

12.
Three new polyhydroxylated oleanane triterpenoids, cissatriterpenoid A−C (1−3), along with one known analogue (4), were isolated from the whole plant of Cissampelos pareira var. hirsuta. Their chemical structures were elucidated by extensive spectroscopic data (IR, HR-ESI-MS, 1H-NMR, 13C-NMR, DEPT, 1H-1H COSY, HSQC, HMBC, NOESY) and the microhydrolysis method. The isolation of compounds 1–4 represents the first report of polyhydroxylated oleanane triterpenoids from the family Menispermaceae. All isolated compounds were evaluated for their cytotoxicity against five human cancer cell lines, and the inhibitory activity against NO release in LPS-induced RAW 264.7 cells. Compound 3 showed the most potent cytotoxic activities against the A549, SMMC-7721, MCF-7, and SW480 cell lines, with IC50 values of 17.55, 34.74, 19.77, and 30.39 μM, respectively, whereas three remaining ones were found to be inactive. The preliminary structure–activity relationship analysis indicated that the γ-lactone ring at C-22 and C-29, and the olefinic bond at C-12 and C-13 were structurally required for the cytotoxicity of polyhydroxylated oleanane triterpenoids against these four cell lines. Based on lipid-water partition coefficients, compound 3 is less lipophilic than 1 and 4, which agrees with their cytotoxic activities. This confirms the potential of C. pareira var. hirsuta in the tumor treatment.  相似文献   

13.
Leukemia is a blood or bone marrow cancer with increasing incidence in developed regions of the world. Currently, there is an ongoing need for novel and safe anti-leukemic agents, as no fully effective chemotherapy is available to treat this life-threatening disease. Herein, are reported the isolation, structural elucidation, and anti-leukemic evaluation of twenty-nine withanolide-type steroids (1–29) from Withania aristata. Among them, the new isolated withanolides, withaperoxidins A–D (1–4) have an unusual six-membered cyclic peroxide moiety on the withasteroid skeleton as a structural novelty. Their structures have been elucidated by means of spectroscopic analyses, including 2D NMR experiments. In addition, extensive structure–activity relationships and in silico ADME studies were employed to understand the pharmacophore and pharmacokinetic properties of this series of withasteroids. Compounds 15, 16, and 22 together with withaferin A (14) were identified as having improved antiproliferative effect (IC50 ranging from 0.2 to 0.7 μM) on human leukemia HL-60 cell lines compared with the reference drug, etoposide. This cytotoxic potency was also coupled with good selectivity index (SI 33.0–9.2) on non-tumoral Vero cell line and in silico drug likeness. These findings revealed that these natural withasteroids are potential candidates as chemotherapeutic agents in the treatment of leukemia.  相似文献   

14.
Four new biflavonoids (1–4) were isolated from Selaginella doederleinii together with a known biflavonoid derivative (5). Their structures contained a rare linker of individual flavones to each other by direct C-3-O-C-4′′′ bonds, and were elucidated by extensive spectroscopic data, including HRESIMS, NMR and ECD data. All isolates significantly inhibited the proliferation of NSCLC cells (IC50 = 2.3–8.4 μM) with low toxicity to non-cancer MRC-5 cells, superior to the clinically used drug DDP. Furthermore, the most active compound 3 suppressed XIAP and survivin expression, promoted upregulation of caspase-3/cleaved-caspase-3, as well as induced cell apoptosis and cycle arrest in A549 cells. Together, our findings suggest that 3 may be worth studying further for intervention of NSCLC.  相似文献   

15.
Thirty-three benzophenanthridine alkaloid derivatives (1a–1u and 2a–2l) were synthesized, and their cytotoxic activities against two leukemia cell lines (Jurkat Clone E6-1 and THP-1) were evaluated in vitro using a Cell Counting Kit-8 (CCK-8) assay. Nine of these derivatives (1i–l, 2a, and 2i–l) with IC50 values in the range of 0.18–7.94 μM showed significant inhibitory effects on the proliferation of both cancer cell lines. Analysis of the primary structure–activity relationships revealed that different substituent groups at the C-6 position might have an effect on the antileukemia activity of the corresponding compounds. In addition, the groups at the C-7 and C-8 positions could influence the antileukemia activity. Among these compounds, 2j showed the strongest in vitro antiproliferative activity against Jurkat Clone E6-1 and THP-1 cells with good IC50 values (0.52 ± 0.03 μM and 0.48 ± 0.03 μM, respectively), slightly induced apoptosis, and arrested the cell-cycle, all of which suggests that compound 2j may represent a potentially useful start point to undergo further optimization toward a lead compound.  相似文献   

16.
As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide–alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the β-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent.  相似文献   

17.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   

18.
Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6–9) and machaeridiols A-C (10–12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, −1708, −1717, −33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6–8 and 10–12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC’s, compared to 12, against MRSA 1708 and −1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5–8 µg/mL for two strains of Acinetobacter baumannii, 2–16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.  相似文献   

19.
Four new pentacyclic triterpenoids named Sabiadiscolor A–D (1 and 7–9) together with eleven known ones were isolated by repeated column chromatography. Their structures were identified and characterized by NMR and MS spectral data as 6 oleanane-type pentacyclic triterpenoids (1–6), 7 ursane-type ones (7–13), and 2 lupanane-type ones (14–15). Except for compound 15, all other compounds were isolated from Sabia discolor Dunn for the first time. Their α-glycosidase inhibitory activities were evaluated, which showed that compounds 1, 3, 8, 9, 13, and 15 implied remarkable activities with IC50 values ranging from 0.09 to 0.27 μM, and the preliminary structure–activity relationship was discussed.  相似文献   

20.
Five new dimer compounds, namely Taiwaniacryptodimers A–E (1–5), were isolated from the methanol extract of the roots of Taiwania cryptomerioides. Their structures were established by mean of spectroscopic analysis and comparison of NMR data with those of known analogues. Their antifungal activities were also evaluated. Our results indicated that metabolites 1, 2, 4, and 5 displayed moderate antifungal activities against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号