首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.  相似文献   

2.
Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey.  相似文献   

3.
This study aimed to characterize bee products (bee bread, bee pollen, beeswax, and multiflorous honey) with the profile of phenolic compounds, total phenolic (TPC) and flavonoid (TFC) contents, and antioxidant and microbiological properties. The TP and TF contents could be ordered as follows: bee pollen > bee bread > beeswax > honey. The UPLC−PDA−MS/MS analysis allowed identifying 20 polyphenols. Sinapic acid dominated in bee pollen, gallic acid in the bee bread and honey, while pinobanksin was the major compound of beeswax. The data showed that bee pollen and bee bread had a stronger antioxidant potential than honey and beeswax. Moreover, the antibacterial activity of the bee products was studied using 14 bacterial strains. Bee bread’s and bee pollen’s antimicrobial activity was higher towards Gram-negative strains. In comparison, honey was more potent in inhibiting Gram-positive bacteria. Our study indicates that bee products may represent valuable sources of bioactive compounds offering functional properties.  相似文献   

4.
This study investigated the antioxidant, antimicrobial, anticancer, and phytochemical profiling of extracts from the leaves and stem/root of Acanthus ebracteatus (AE). The total phenolic content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical-scavenging activity, 2, 2′-azino-Bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity, metal chelating activities (MCA), ferric reducing antioxidant power (FRAP) and oxygen radical antioxidant capacity (ORAC) were used for antioxidant assessment. The ethanolic extracts of the leaves (AEL-nor) and stem/root (AEWP-nor) without chlorophyll removal and those with chlorophyll removal, using sedimentation process (AEL-sed and AEWP-sed), were prepared. Generally, AEL-sed showed the highest antioxidant activity (FRAP: 1113.2 µmol TE/g; ORAC: 11.52 µmol TE/g; MCA: 47.83 µmol EDTA/g; ABTS 67.73 µmol TE/g; DPPH 498.8 µmol TE/g; TPC: 140.50 mg/GAE g and TFC: 110.40 mg/CE g) compared with other extracts. Likewise, AEL-sed also showed the highest bacteriostatic (MIC) and bactericidal (MBC) effects, as well as the highest anticancer and antiproliferative activity against oral squamous carcinoma (CLS-354/WT) cells. UPLC-ESI-QTOF/MS analysis of AEL-sed and AEWP-sed tentatively identified several bioactive compounds in the extracts, including flavonoids, phenols, iridoids, and nucleosides. Our results provide a potentially valuable application for A. ebracteatus, especially in further exploration of the plant in oxidative stress-related disorders, as well as the application of the plant as potential nutraceuticals and cosmeceuticals.  相似文献   

5.
Bee products are known for their beneficial properties widely used in complementary medicine. This study aims to unveil the physicochemical, nutritional value, and phenolic profile of bee pollen and honey collected from Boulemane–Morocco, and to evaluate their antioxidant and antihyperglycemic activity. The results indicate that Citrus aurantium pollen grains were the majority pollen in both samples. Bee pollen was richer in proteins than honey while the inverse was observed for carbohydrate content. Potassium and calcium were the predominant minerals in the studied samples. Seven similar phenolic compounds were found in honey and bee pollen. Three phenolic compounds were identified only in honey (catechin, caffeic acid, vanillic acid) and six phenolic compounds were identified only in bee pollen (hesperidin, cinnamic acid, apigenin, rutin, chlorogenic acid, kaempferol). Naringin is the predominant phenolic in honey while hesperidin is predominant in bee pollen. The results of bioactivities revealed that bee pollen exhibited stronger antioxidant activity and effective α-amylase and α-glycosidase inhibitory action. These bee products show interesting nutritional and bioactive capabilities due to their chemical constituents. These features may allow these bee products to be used in food formulation, as functional and bioactive ingredients, as well as the potential for the nutraceutical sector.  相似文献   

6.
The incidence of antibiotic resistance in pathogenic bacteria has become an alarming clinical and social problem. Therefore, the demand for alternative antimicrobial compounds has increased. In this study, a chemical profile of honey bee (Apis mellifera L.) venom (HBV) has been determined by HPLC and FTIR-ATR spectroscopy, and tested for antibacterial activity, as well as efficiency with regard to conventional antibiotics. The investigated HBV was of high quality with melittin and total protein contents of 70.10 ± 7.01%, and 84.44 ± 3.12 g/100 g, respectively. The purity of HBV was confirmed by FTIR-ATR spectral profiling, which revealed a unique pattern of absorption bands that are characteristic of its major fractions. In addition, HBV showed a broad spectrum of activity against all three tested biomasses of potentially pathogenic Gram-positive and Gram-negative bacteria with MIC values ranging between 12.5 and 200 µg/mL, and MBC between 12.5 and 400 µg/mL. When compared to conventional antibiotics, HBV (400 µg) showed up to 27.8% efficiency of tetracycline (30 µg), 52.2% erythromycin (15 µg), 21.2% ciprofloxacin (5 µg), and 34.6% of ampicillin-sulbactam (20 µg). The overall results demonstrate the therapeutic potential of the analyzed HBV.  相似文献   

7.
This study examined for the first time whether bee bread (BB, consisting of monofloral rape bee pollen) could alleviate lipid derangements and reduced bone quality in Zucker diabetic fatty (ZDF) rats, which are considered an appropriate animal model for type 2 diabetes mellitus (T2DM) investigation. Adult ZDF rats were segregated into four groups: lean non-diabetic rats (L group), obese diabetic rats untreated (C group), and those treated with the BB at two doses (500 and 700 mg/kg body weight, respectively, B1 and B2 groups) for 10 weeks. Significantly reduced levels of total cholesterol and triglyceride were recorded in the B2 group versus the C group. In both BB-treated groups, significantly increased relative volume of trabecular bone and trabecular thickness, enhanced density of secondary osteons, accelerated periosteal bone apposition, and improved blood flow were observed. A positive effect of higher dose of BB on femoral weight and cortical bone thickness was also demonstrated. Our results suggest a promising potential of BB to ameliorate T2DM-related complications associated with lipid and bone damages.  相似文献   

8.
In this study, the botanical origin, total flavonoid and phenolic content, antioxidant activity, phenolic profile and fatty acid composition of mixed bee pollen loads collected in Bayburt, Turkey, were determined. In addition to these assays, antibacterial activity of bee-collected pollen extract (BCPE) against a variety of food-borne pathogenic bacteria was determined in vitro. Pollen loads were classified into five botanical families based on their color: Asteraceae, Fabaceae, Campanulaceae, Cistaceae and Rosaceae. Total flavonoid, total phenolic, CUPRAC and CERAC concentrations were 173.52 mg GAE/g, 79.21 mg QE/g, 85.59 mg Trolox/g and 118.13 mg Trolox/g, respectively. Twenty-three phenolic compounds were scanned in bee pollen extract by LC-MS/MS, with rutin being the most abundant. Cis-4,7,10,13,16,19 docosahexaenoic acid was the predominant fatty acid, followed by cis-11-eicosenoic acid, palmitic acid, and alfa linolenic acid. In addition, the agar well diffusion (AWD) and micro-broth dilution methods were used to determine of the antibacterial activity of the BCPE sample. MIC values were observed to vary between 2.5–5 mg/mL for Gram-positive bacteria and 5–10 mg/mL for Gram-negative bacteria. These findings indicate that bee pollen could be a potential source of antioxidants and antimicrobials.  相似文献   

9.
The main objective of this research was to study the biological characteristics in terms of antioxidant and antimicrobial activities of Ajuga iva and determine the best analytical and extraction methods applicable to this specie and studied compounds. A short screening of its nutritional value in terms of chemical composition is also included. A. iva leaves were analyzed for crude protein (CP), cell wall [neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL)], minerals, fatty acids, essential oils, and phenolic compounds. Mature aerial parts of A. iva were randomly collected during the Spring season from Mograne-Zaghouan, Tunisia. Leaves of A. iva contained 13.4 ± 0.4% CP, 26.3 ± 0.35% NDF, 20.2 ± 0.42% ADF, and 5.13 ± 0.21% ADL. Mineral content (13.0 ± 0.45%) was mainly composed of potassium (4.5% g DM) and magnesium (4.25% DM). Leaves of A. iva had linolenic (26.29 ± 0.760%) and linoleic (37.66 ± 2.35%) acids as the main components of the acid profile. Thymol was found to be the most dominant (23.43%) essential oil, followed by 4-vinylguaiacol (14.27%) and linalool (13.66%). HPLC-PDA-ESI-MS/MS analysis pointed out the presence of phytoecdysteroids. Phenolic acids and flavonoids, such as glycosylated derivatives of naringenin, eriodyctiol, and apigenin, were detected in the methanol extract of A. iva leaves. Our results underline the importance of choosing proper extraction methods and solvents to extract and characterize the described compounds profile of A. iva leaves. Results also show A. iva leaves as a potential source of functional ingredients with beneficial health-promoting properties. Overall, leaves of A. iva have low biological activities (antioxidant and antimicrobial activities) with a chemical composition suitable as a feed for ruminants in rangeland pasture. It also has low-grade antibacterial or medicinal characteristics when fed to ruminants.  相似文献   

10.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.  相似文献   

11.
Nine samples of ethanolic extracts of poplar-type propolis (EEP) originated from South-Eastern Poland were analyzed in terms of the diversity of the flora around the apiary. The mineral composition, antioxidant properties, polyphenolic profile (HPTLC), and main polyphenolic constituents (HPLC-DAD) were determined. Only minor differences in chemical composition and antioxidant capacity between tested EEPs were found regardless of their botanical origin. However, the biological activity of the EEPs was more diversified. The tested EEPs showed stronger antibacterial activity against Gram-negative bacteria (Escherichia coli) compared to Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis). Staphylococci biofilm inhibition occurred as a result of exposure to the action of four out of nine EEPs (P1–P4). Due to the various compositions of individual EEPs, a different MCF-7 cellular response was observed according to inhibition of cells migration and proliferation. Almost every sample inhibited the migration of breast cancer cells at a low concentration (0.04 µg/mL) of propolis. Even at the lowest concentration (0.02 µg/mL), each EEP inhibited the proliferation of MCF-7 cells, however, the level of inhibition varied between samples.  相似文献   

12.
The aim of this study was to determine the variability of several chemical compounds and the antioxidant and antimicrobial activities of eight types of berries harvested from two different geographical regions in the same year. The analyses were performed on bilberry, black currant, gooseberry, red currant, raspberry, sea buckthorn, strawberry and sour cherry, which were handpicked during the summer of 2019, in the same periods when they are typically harvested for consumer purposes. Total anthocyanins content (TAC), total flavonoids content (TFC), total polyphenolic compounds (TPC), determination of the Ferric-Reducing Antioxidant Power (FRAP), determination of the DPPH free radical scavenging assay (RSA), determination of nine phenolic compounds by HPLC-UV assay and antimicrobial activity were determined for undiluted hydroalcoholic extracts of all the studied berries. The results showed that the berries from Romania were richer in antioxidant compounds than the berries from Russia. The TPC content varied between 4.13–22.2 mg GAE/g d.w., TFC between 3.33–8.87 mg QE/g d.w. and TAC between 0.13–3.94 mg/g d.w. The highest variability was determined for TPC. Regarding the antioxidant activity assessed by FRAP assay, values were between 6.02–57.23 µmols TE/g d.w. and values for the RSA method between 18.44–83.81%. From the eight types of berries analyzed, bilberries and raspberries had the highest antioxidant activity considering both regions and both determination methods. Not only the type, but also the environmental and cultivation conditions in which the berries grow, can lead to variations in their chemical composition. The extracted polyphenolic compounds from the studied berries showed antibacterial properties on pathogens, such as Escherichia coli, Bacillus subtilis and Staphyloccocus aureus. The inhibitory action on Salmonella typhi and fungi Candida albicans and Aspegillus niger was absent to very low. The antimicrobial activity of the hydroalcoholic extracts was dependent on the provenance of the berries, too.  相似文献   

13.
Solanum elaeagnifolium is among the invasive plants of Morocco; studies on its chemical composition and biological activities are few in number in Morocco. S. elaeagnifolium has shown molluscicidal and nematicidal and cancer-inhibitory effects, anti-inflammatory, analgesic activity, and antibacterial activity. The objective of this research is to improve this plant and assess its antibacterial and antioxidant properties as well as its total polyphenolic content (TPC) and total flavonoid content (TFC). The Folin-Ciocalteu method and the aluminium-trichloride method were used to determine TPC and TFC in hydro-ethanolic (HEE) and hydro-acetonic (HAE) leaf extract. Three assays were performed to determine the antioxidant activity: the DPPH test (radical 2,2’-diphenyl-1-picrylhydrazyl), the FRAP test (Ferric Reducing Antioxidant Power), and the TAC test. Disk diffusion and microdilution were used to test antibacterial activity against four pathogenic bacteria and Candida albicans. The hydro-ethanolic extract 2.54 ± 0.4 mg EAG/g has a greater polyphenol concentration than the hydro-acetonic extract 1.58 ± 0.03 mg EAG/g. Although the flavonoid content of the hydro-acetonic extract (0.067 ± 0.001 mg EQ/g) is larger than that of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g), the flavonoid content of the hydro-ethanolic extract (0.012 ± 0.001 mg EQ/g). The DPPH values were IC-50 = 0.081 ± 0.004 mg/mL for hydro-ethanoic extract and 0.198 ± 0.019 mg/mL for hydro-acetonic extract, both extracts superior to BHT (0.122 ± 0.021 g/mL). While the FRAP assay showed a low iron-reducing power values for both extracts compared to BHT), the overall antioxidant activity of the two extracts was found to be considerable. The overall antioxidant activity of the hydro-ethanolic extract was 8.95 ± 0.42 mg EAA/g, whereas the total antioxidant activity of the hydro-acetonic extract was 6.44 ± 0.61 mg EAA/g. In comparison with the antibiotic Erythromycin, HAE and HEE from S. elaeagnifolium leaves demonstrated significant antibacterial action. HAE had the best inhibitory efficacy against Bacillus subtilis DSM 6333, with an inhibition diameter of 10.5 ± 0.50 mm and a MIC of 7.5 ± 0.00 mg/mL, as well as against Proteus mirabilis ATCC 29906, with an inhibitory diameter of 8.25 ± 0.75 mm and a MIC of 15 ± 0.00 mg/mL.  相似文献   

14.
Satureja nabateorum (Danin and Hedge) Bräuchler is a perennial herb in the Lamiaceae family that was discovered and classified in 1998. This green herb is restricted to the mountains overlooking the Dead Sea, specifically in Jordan’s southwest, the Edom mountains, and the Tubas mountains in Palestine. Gas chromatography-mass spectrometry (GC-MS) analysis of essential oil (EO) of air-dried and fresh S. nabateorum resulted in the identification of 30 and 42 phytochemicals accounting for 99.56 and 98.64% of the EO, respectively. Thymol (46.07 ± 1.1 and 40.64 ± 1.21%) was the major compound, followed by its biosynthetic precursors γ-terpinene (21.15 ± 1.05% and 20.65 ± 1.12%), and p-cymene (15.02 ± 1.02% and 11.51 ± 0.97%), respectively. Microdilution assay was used to evaluate the antimicrobial property of EOs against Staphylococcus aureus (ATCC 25923), clinical isolate Methicillin-Resistant Staphylococcus aureus (MRSA), Enterococcus faecium (ATCC 700221) Klebsiella pneumoniae (ATCC 13883), Proteus vulgaris (ATCC 700221), Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) and Candida albicans (ATCC-90028). With a MIC of 0.135 μg/mL, the EOs has the most potent antibacterial action against K. pneumonia. Both EOs display good antifungal efficacy against C. albicans, with a MIC value of 0.75 μg/mL, which was better than that of Fluconazole’s (positive control, MIC = 1.56 μg/mL). The antioxidant capacity of EOs extracted from air-dried and fresh S. nabateorum was determined using the DPPH assay, with IC50 values of 4.78 ± 0.41 and 5.37 ± 0.40 μg/mL, respectively. The tested EOs showed significant cytotoxicity against Hela, HepG2, and COLO-205 cells, with IC50 values ranging from 82 ± 0.98 to 256 ± 1.95 μg/mL. The current work shows there is a possibility to use the S. nabateorum EOs for various applications.  相似文献   

15.
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   

16.
Grape canes represent a valuable source of numerous polyphenols with antioxidant properties, whose compositions vary depending on the genotype and environmental factors. Antioxidant activities of pure molecules are often reported without considering possible interactions that may occur in complex polyphenol mixture. Using UPLC-MS-based metabolomics and unsupervised classification, we explored the polyphenol variations in grape cane extracts from a collection of European varieties. Antioxidant activities were assessed using ORAC, ABTS, DPPH, FRAP, CUPRAC and chelation assays. Pairwise correlations between polyphenols and antioxidant capacities were performed to identify molecules that contributed more to the antioxidant capacities within a complex mixture of polyphenols.  相似文献   

17.
Background: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375–1829 m). Methods: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. Results: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. Conclusions: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products.  相似文献   

18.
The present study aimed to analyze and compare the chemical profile and antioxidant capacity of propolis from different bee species and different regions. The chemical profiles of propolis from six stingless bee species (Tetragonula iridipennis, T. laeviceps, Lepidotrigona terminata, L. ventralis, Lisotrigona carpenteri and Homotrigona apicalis) collected from a total of eight locations in Vietnam were investigated by gas chromatography–mass spectrometry (GC-MS). More than 70 compounds were identified, amongst which phenolic lipids (cardanols, resorcinols and anacardic acids), aromatic acids, triterpenes and xanthones. Taxonomic markers for Mangifera indica (phenolic lipids and cycloartane triterpenes) were detected in propolis from bees of the genera Tetragonula and Lepidotrigona, although in different amounts, whereas propolis from H. apicalis was characterized by triterpenes of the amyrine type, typical of dipterocarp trees. A clear discrimination between both groups was observed by principal component analysis (PCA) and partial least squares–discriminant analysis (PLS-DA). Propolis from Tetragonula and Lepidotrigona spp. and from Lisotrigona carpenteri, which is rich in xanthones, possesses higher radical scavenging and ferric-reducing capacity than that from H. apicalis. Propolis produced by all six stingless bee species in Vietnam was analyzed for the first time. In addition, this is the first report on L. carpenteri propolis.  相似文献   

19.
Background: This study aimed to determine the effect of poppy seed flour (PF) on the physicochemical and spectroscopic properties of low-carbohydrate, high-protein, and gluten-free bread. Methods: The changes at the molecular level were assessed in bread using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Bread prepared with buckwheat, flaxseed, and pea protein was enriched with PF at a concentration of 5–15%. Results: The results showed that the pasting parameters of dough supplemented with PF were significantly decreased compared to the control sample. The obtained bread samples were characterized by good quality and had 14.6% of carbohydrate, 16.3% of protein, 10.2% of fiber, and 4.0% of fat, with a caloric value of 177 kcal/100 g. The addition of PF had little influence on crumb mechanical properties. The ATR-FTIR analyses revealed spectral changes in the region related to protein and carbohydrate structures, as well as changes in band intensity characteristic of α-1,4-glycoside and α-1,6-glycoside bonds. The analyses showed that the main starch skeleton remained clearly visible. Conclusions: PF up to 10% can be potentially applied as a functional ingredient in the production of bread based on buckwheat and linseed flour. Such low-carbohydrate bread can be particularly useful to diabetics.  相似文献   

20.
The ability of microorganisms to reduce inorganic metals has launched an exciting eco-friendly approach towards developing green nanotechnology. Thus, the synthesis of metal nanoparticles through a biological approach is an important aspect of current nanotechnology. In this study, Streptomyces aizuneusis ATCC 14921 gave the small particle of silver nanoparticles (AgNPs) a size of 38.45 nm, with 1.342 optical density. AgNPs produced by Streptomyces aizuneusis were characterized by means of UV-VIS spectroscopy and transmission electron microscopy (TEM). The UV-Vis spectrum of the aqueous solution containing silver ion showed a peak between 410 to 430. Moreover, the majority of nanoparticles were found to be a spherical shape with variables between 11 to 42 nm, as seen under TEM. The purity of extracted AgNPs was investigated by energy dispersive X-ray analysis (EDXA), and the identification of the possible biomolecules responsible for the reduction of Ag+ ions by the cell filtrate was carried out by Fourier Transform Infrared spectrum (FTIR). High antimicrobial activities were observed by AgNPs at a low concentration of 0.01 ppm, however, no deleterious effect of AgNPs was observed on the development and occurrence of Drosophila melanogaster phenotype. The highest reduction in the viability of the human lung carcinoma and normal cells was attained at 0.2 AgNPs ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号