首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization (APCI) mass spectrometry was used for the separation and detection of amino acid and peptide enantiomers. With detection limits as low as 250 pg, 25 amino acids enantiomers were baseline resolved on a Chirobiotic T chiral stationary phase. APCI demonstrated an order of magnitude better sensitivity over electrospray ionization (ESI) for free amino acids and low molecular mass peptides at the high LC flow-rates necessary for rapid analysis. As the peptide chain length increased (peptides with M(r) > or = 300 Da), however, ESI proved to be the more ideal atmospheric pressure ionization source. A mobile phase consisting of 1% (w/w) ammonium trifluoroacetate in methanol and 0.1% (w/w) formic acid in water increased the sensitivity of the APCI method significantly. A step gradient was then used to separate simultaneously all 19 native protein amino acid enantiomers in less than 20 min using extracted ion chromatograms.  相似文献   

2.
Summary This study demonstrated the utility of high-performance liquid chromatography/atmospheric pressure ionization mass spectrometry (HPLC/API-MS) in the investigation of 10-methoxy-1,6-dimethylergoline-8-methanol 5-bromonicotinic acid ester (Nicergoline) and its related substances. The analysis was performed by using an ODS column with ammonium acetate and methanol mixture as the mobile phase. Nicergoline and its related compounds could be characterized by HPLC/API-MS in terms of their molecular weight. The use of multiple ion detection techniques for the quantitation of these compounds was also investigated. The detection limits of nicergoline and its related substances were 5 to 10 ng each at a signal-to-noise ratio of 4. The method was also applied to the study of the decomposition products of nicergoline in simulated gastric and intestinal fluids.  相似文献   

3.
A sensitive, specific, accurate and reproducible analytical method was developed and validated to quantify perfluorooctanoic acid (PFOA) in human serum. After initial extraction with an ion-paring reagent, the procedure for quantifying PFOA is based on high-performance liquid chromatography (HPLC) interfaced to negative ion tandem mass spectrometry, operating in selected ion monitoring mode. The retention times of PFOA and its internal standard (D,L-malic acid) were 5.85 and 1.70 min, respectively. The assay was linear over the range 0-500 ng/mL, with a lower limit of quantification (LOQ) of 25 ng/mL, and with a coefficient of variation (CV) of 7.3%. The lower limit of detection (LOD) was assessed as 10 ng/mL. The overall precision and accuracy were assessed on three different days. The within- and between-day precision was < or =9.7 and 6.8%, respectively, and the accuracy was in the range 96-114%. The mean extracted recovery assessed at three different concentrations (100, 250, and 500 ng/mL) was always more than 85%. With this method no derivatization procedure was needed, thus avoiding possible thermal and chemical decomposition reactions of PFOA. The assay was applied to quantify perfluorooctanoic acid in serum from employees exposed to fluorochemicals commonly used in industrial applications for polymer production. The quantitative results for PFOA blood levels were found to vary between 100 and 982 ng/mL.  相似文献   

4.
A method using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS) has been developed for the characterization and determination of pyridoquinoline derivatives 4,6-bis(dimethylaminoethylamino)-2,8,10-trimethylpyrido[3,2-g]quinoline, 4,6-bis(dimethylaminoethoxy)-2,8,10-trimethylpyrido[3,2-g]quinoline and 4,6-bis[(dimethylaminoethyl)thio]-2,8,10-trimethylpyrido[3,2-g] quinoline, all with potential antitumor properties. LC separation was performed on a conventional C18 column using a binary mobile phase composed of acetonitrile and 50 mM aqueous ammonium formate at pH 3. The APCI mass spectra obtained showed that proton addition giving [M + H]+ was the common mode of ionization to the amino- and thiopyridoquinolines, whereas the alkoxypyridoquinoline was identified by the main formation of the [M - (C2H3)N(CH3)2 + H]+, followed by the [M + H]+ ion. The LC separation conditions and MS detection parameters were optimized for the determination. The analytical method was also applied to the determination of these pyridoquinoline derivatives in fetal calf serum using liquid-liquid extraction with dichloromethane. Acceptable recovery values were obtained, ranging between 45 and 98%.  相似文献   

5.
High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS) is a very promising approach to structural investigations of positional isomers and stereoisomers. This method was applied successfully to stereoisomeric norditerpenoid alkaloids differing in configuration at C-6. APCI-MS allowed the easy and precise control of energy deposition by varying the drift voltage. Comparison of the breakdown curves, observed by changing the potential difference between the first electrode and the second electrode of the APCI ion source, revealed the stereochemical dependence of different fragmentations. Comparison of the APCI spectra showed that the abundance of fragment ions was significantly higher for C-6beta alkaloid than for C-6alpha alkaloid. The axial positions of the corresponding substituents (6-methoxyl and 8-hydroxyl) strongly suggested a 1,3-diaxial interaction effect of the fragmentation. The characteristic fragment ions were formed by the loss of water or acetic acid at position 8, irrespective of the stereochemistry at position 6. The possibility of distinct fragmentation mechanisms depending on the stereochemistry of the precursor ion could be discerned by recording the spectra in a deuterated solvent system of 0.05 M ammonium acetate in D2O-acetonitrile-tetrahydrofuran. Loss of D2O from the precursor ion gave the fragment ion. This result indicated that the proton of protonation was included in the leaving water molecule. The peak intensity ratio R = [M+H]+/[M+H-H2O]+ manifested the stereochemical differentiation of alkaloids at position 6.  相似文献   

6.
On-line high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (HPLC/APCI-MS) has been applied to the identification of a number of tetrapyrrolic pigments as well as several magnesium-free analogs. Mass spectra, acquired both in positive (+) and negative (-) ionization mode, allow not only the determination of the structural features of the pigments, but also a very easy differentiation of the Mg-chelated pigments from the free bases. In the positive ionization mode, all pigments show mainly a [M + H]+ ion and a [M + H - C20H38]+ fragment ion corresponding to the loss of the phytyl chain via a hydrogen rearrangement. In the negative ionization mode, on the other hand, although all pigments give an abundant molecular anion [M]-*, only the Mg-chelated chlorin spectra show a prominent fragment [M - C20H39]- produced by a formal loss of the phytyl radical.  相似文献   

7.
8.
9.
Reversed-phase liquid chromatography with atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS) in the positive-ion mode was utilized to analyze crude ether extracts from the root bark of Maclura pomifera, a tree known to have a high content of prenylated xanthones and flavanones. Identification of three xanthones and two flavanones was based on their unique mass spectra. Under optimum conditions peaks corresponding to the [MH](+) ion and characteristic fragments for each compound were observed. (1)H NMR data were used to confirm the identities of two xanthones that had the same molecular mass and similar fragmentation patterns. Fragmentation of the analytes was achieved by application of an electrostatic potential at the entrance of the single quadrupole mass spectrometer. The optimum voltage for fragmentation was found to be related to the class of compounds analyzed and, within each class, to be dependent on the structure of the prenyl moiety. Collision-induced pathways consistent with precedent literature describing the MS characterization of similar compounds and with the observed fragmentation patterns are tentatively proposed.  相似文献   

10.
The narrow gap between essentiality and toxicity of selenium requires detailed investigations on selenium metabolism in order to find suitable indicators for the selenium status in the human body. Current methods for quantitative selenium speciation in human urine are based on separation by high-performance liquid chromatography (HPLC) coupled online with elemental mass spectrometry (MS), and the potential of molecular MS detection techniques for the reliable identification and quantification of selenosugars in crude human urine has not been utilized. Now we report the development of an HPLC tandem mass spectrometric (MS/MS) method for the reliable determination in crude human urine of three significant selenium urinary metabolites, collectively termed selenosugars, namely methyl 2-acetamido-2-deoxy-1-seleno-beta-D-galactopyranoside (SeGalNAc), methyl 2-acetamido-2-deoxy-1-seleno-beta-D-glucopyranoside (SeGluNAc) and methyl 2-amino-2-deoxy-1-seleno-beta-D-galactopyranoside (SeGalNH2). Reversed-phase HPLC, with and without cation-exchange guard columns, was applied for the separation of the selenosugars, and atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) were used for selective and sensitive detection. The collision-induced dissociation behaviour of the selenosugars was studied in detail using APCI triple quadrupole MS/MS and electrospray ion trap MS. The developed method was applied to urine samples collected prior to and after selenium supplementation for the quantification of SeGalNAc using both external calibration and the method of standard additions. Additionally, SeGalNH2 was detected in urine samples after Se supplementation. Finally, neutral loss scanning was explored as a possible method for the detection of unknown methyl-selenosugars.  相似文献   

11.
Use of optimized instrument parameters that result from statistical experimentation revealed that the sensitivity of atmospheric pressure chemical ionization (APCI) liquid chromatography-mass spectrometry (LC/MS) is greater than the sensitivity of an optimized Thermabeam? LC/MS interface by about 3 orders of magnitude, when tested on aromatic compounds. APCI is one of the few LC/MS techniques in which the chromatogram is directly comparable with liquid chromatographs that use ultraviolet detection. The optimum instrument parameters for a Finnigan SSQ-7000 APCI LC/MS interface were found at low flow rates (e. g., 0. 1 mL/min), relatively low capillary heat (e. g., 225 °C), and high sheath-gas pressure (e. g., 60 lb/in2). The optimization was achieved by monitoring the responses of sensitivity, fragmentation, and cluster ion formation. The fine tuning for high sensitivity calls for a high percentage of water in the mobile phase. In contrast, a high percentage of organic content in the mobile phase is required to obtain abundant protonated molecular ions with respect to fragmentation and clustering. This is an important consideration for analyses of unknowns.  相似文献   

12.
A simple, sensitive and selective liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometric method (LC/APCI-MS/MS) was developed and applied to quantitative determination of uptake of cholesterol by Caco-2 human intestine cells. Caco-2 cells were cultured in medium containing cholesterol-3,4-13C2 and phytosterols from nutritional supplements after in vitro digestion. Cellular cholesterol (cholesterol-3,4-13C2) and endogenous cholesterol were extracted using methanol/chloroform (1:2, v/v) and directly analyzed using LC/APCI-MS/MS with selected reaction monitoring (SRM), using cholesterol-2,2,3,4,4,6-d6 as an internal standard. Detection and quantification limits were 2.2 and 7.2 pmol, respectively. This method provides an effective tool for rapid determination of cholesterol uptake by cells with increased selectivity and sensitivity in comparison to previously reported LC/APCI-MS analysis using selected ion monitoring (SIM).  相似文献   

13.
14.
An analytical method is presented for the determination of chlorantraniliprole residues in crops. Chlorantraniliprole residues were extracted from crop matrixes with acetonitrile after a water soak. The extracts were passed through a strong anion-exchange (SAX) SPE cartridge stacked on top of a reversed-phase (RP) polymer cartridge. After both cartridges were rinsed and vacuum-dried, the SAX cartridge was removed, and chlorantraniliprole was eluted from the RP polymer cartridge with acetonitrile. The acetonitrile eluate was evaporated to dryness, reconstituted, and analyzed using an LC/MS/MS instrument equipped with an atmospheric pressure chemical ionization source. The method was successfully validated at 0.010, 0.10, and 10 mg/kg for the following crop matrixes: potatoes, sugar beets (tops), lettuce, broccoli, soybeans, soybean forage, tomatoes, cucumbers, oranges, apples, pears, peaches, almonds (nutmeat), rice grain, wheat grain, wheat hay, corn stover, alfalfa forage, cottonseed, grapes, and corn grain. The average recoveries from all crop samples fortified at the method LOQ ranged from 91 to 108%, with an overall average recovery of 97%. The average recoveries from all crop samples fortified at 10 times the method LOQ ranged from 89 to 115%, with an overall average recovery of 101%. For all of the fortified control samples analyzed in this study, the overall average recovery was 99%.  相似文献   

15.
HPLC-atmospheric pressure chemical ionization MS (HPLC-APCI-MS) was used to screen and identify glycosides in tobacco leaf. MS/MS and MS3 and photodiode array (PDA) detection were also used in the characterization. A total of 12 glycosides were found and four of them were identified based on their abundant [M + H]+ ions, UV spectra, and MS/MS analysis and they are scopolin, rutin, quercetin-3-glycoside, and kaempferol-3-rutinoside. Analytical characteristics of the method were investigated. The contents of these glycosides were obtained and compared based on the relative peak area to the internal standard in seven kinds of tobacco leaf.  相似文献   

16.
Summary High-performance liquid chromatography (HPLC) and high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (HPLC/APCI-MS) have been applied to the analysis of thiamine in dried yeast. Thiamine was extracted from dried yeast with isobutanol containing sodium 1-octanesulfonate as an ion-pairing agent and determined by HPLC on a reversed phase ODS column with UV detection at 254 nm. Response was linear in the range 25–300 μg/g of thiamine in dried yeast with a coefficient of variation in the reproducibility of 8.0%. Thiamine was recovered in good yield (109.2%, n=5). Identification of the thiamine peak was obtained by the mass spectrum using the HPLC/APCI-MS system. The utility of the selected ion monitoring technique using the HPLC/APCI-MS was also investigated. The results obtained by this method are in good agreement with those obtained by the thiochrome method [1].  相似文献   

17.
The qualitative analysis of bufadienolides in the Chinese drug ChanSu was performed using high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS). Bufadienolides are the major bioactive constituents of ChanSu, which is used to treat heart failure and cancer in traditional Chinese medicine. The APCI-MS fragmentation behavior of bufadienolides was studied. For bufadienolides with only hydroxyl substituents, the fragmentation was characterized by successive eliminations of H(2)O and CO molecules, and the profile of MS/MS product ions was correlated with the number of hydroxyl groups. If a C-16 acetoxyl group was present, the fragmentation of [M+H](+) ions was triggered by initial loss of 60 Da (HOAc). The elimination of CO was significant for bufadienolides with a 19-formyl group, and the 19-hydroxyl group could be characterized by the loss of 30 Da (HCHO). These fragmentation rules were applied to the identification of bufadienolides in a methanolic extract of ChanSu, which was separated on a C(18) column with gradient elution. A total of 35 bufadienolides were identified, including four new constituents. The method established here facilitated the convenient and rapid quality control of ChanSu crude drug and its pharmaceutical preparations.  相似文献   

18.
Ladderane lipids, containing three or five linearly concatenated cyclobutane moieties, are considered to be unique biomarkers for the process of anaerobic ammonium oxidation, an important link in the oceanic nitrogen cycle. Due to the thermal lability of the strained cyclobutane moieties, the ladderane lipids are difficult to analyze by gas chromatography. A method combining high-performance liquid chromatography coupled to positive ion atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) was developed for the analysis of the most abundant ladderane lipids, occurring as fatty acids and ether-bound to glycerol. Detection was achieved by selective reaction monitoring of four specific fragmentations per ladderane lipid. Detection limits of 30-35 pg injected on-column and a linear response (r(2) > 0.99) over nearly 3 orders of magnitude were achieved for all compounds. Using this method, these unique ladderane lipids were for the first time identified in a surface sediment from the Gullmarsfjorden, in concentrations ranging from 1.1-5.5 ng/g for the ladderane fatty acids and of 0.7 ng/g for the monoether. It is foreseen that this method will allow the investigation of the occurrence of anaerobic ammonium oxidation in natural settings in much greater detail than before.  相似文献   

19.
Fructus Evodiae (Wuzhuyu), the fruits of Evodia rutaecarpa and related varieties, is widely used in traditional Chinese medicine. The bioactive constituents include the indoloquinazoline alkaloids rutaecarpine, evodiamine and dehydroevodiamine. A new assay based on high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/UV/APCI-MS/MS) was developed for the measurement of the indoloquinazoline alkaloids in commercial Fructus Evodiae products. Initially, the MS/MS fragmentation pathways of indoloquinazoline alkaloids were investigated to identify fragment ions that might be useful for the sensitive and selective detection of trace indoloquinazoline alkaloids during LC/MS/MS. Then, quantitative MS analysis of five indoloquinazoline alkaloids in 12 commercial Fructus Evodiae products from different geographical sources was performed. Analyte recovery was in the range of 97.5-105.3% for all with relative standard deviations (RSDs) below 6%, the intra-assay and inter-assay RSDs were less than 7%, and good linear relationships were shown with correlation coefficients for the analytes exceeding 0.999. Therefore, this LC/MS/MS assay facilitated the rapid quantitative analysis of rutaecarpine, evodiamine, evodiamide, 14-formyldihydrorutaecarpine and dehydroevodiamine in 12 commercial Fructus Evodiae products with excellent recovery, repeatability, accuracy and sensitivity. This method is simple and specific and can be used for identification and quality control of this traditional Chinese remedy.  相似文献   

20.
Using the high performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (HPLC/APCI-MS/MS) technique, together with established trends from the literature, the structures of metabolites and impurities of amiodarone, an anti-arrhythmic drug, have been assigned. By comparing analyses of products of incubation with rat liver microsomes with controls in which glucose 6-phosphate dehydrogenase was omitted, metabolites could be distinguished from impurities. Structures for the two proposed metabolites and four impurities are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号