首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationship between the structure and the thermal stability of poly(vinyl chloride) synthesized by various polymerization catalysts was investigated. The Cp∗Ti(OPh)/MAO catalyst, n-butyllithium (n-BuLi), the Cu(0)/TREN/CHBr3/DMSO catalyst, benzoyl peroxide/N,N-dimethylaniline (BPO/DMA), 2,2’-azobis(2.4-dimethylvaleronitrile) (V-65) was used as the polymerization catalyst. The temperature of 5% weight loss was in the following order; Cp∗Ti(OPh)3/MAO (280 °C) > n-BuLi (264 °C) > V-65 (249 °C) > Cu(0)/TREN/CHBr3/DMSO (215 °C) > BPO/DMA (209 °C), and the rate of weight loss was the reverse order of T−5% in the isothermal degradation of the polymer from 160 °C to 220 °C. The T−5% value of the polymer obtained from the polymerization with Cp∗Ti(OPh)3/MAO catalyst increased with an increase of the molecular weight of PVC, in contrast to that PVC obtained with the radical initiator did not depend on the molecular weight of the polymer. The T−5% value of PVC macromonomer was 285 °C, while the temperature of non-functionalized PVC was 262 °C, respectively. It is clear that the PVC macromonomer had a good thermal stability regardless of low-molecular weight.  相似文献   

2.
This paper presents an initial attempt at describing poly(vinyl chloride) (PVC) thermal degradation through a semi-detailed and lumped kinetic model. A mechanism of 40 species and pseudocomponents (molecules and radicals) involved in about 250 reactions permits quite a good reproduction of the main characteristics of PVC degradation and volatilization. The presence of the two step mechanism—the first step of which corresponds to dehydrochlorination and the second to the tar release and residue char formation—are correctly predicted both in quantitative terms and in the temperature ranges. The model was validated by comparison with several thermo gravimetric analyses, both dynamic at different heating rates, and isothermal. When compared with the typical one step global apparent degradation models, the approach proposed here spans quite large operative ranges, especially when it comes to predicting product distributions. The initial results of these product predictions, even though quite preliminary, are encouraging and confirm the validity of the model.  相似文献   

3.
This work reports the synthesis of several copolymers of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-Poly(vinyl chloride) prepared by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP) in a two step process: first, a bifunctional macroinitiator of α,ω-di(iodo)poly(butyl acrylate) [α,ω-di(iodo)PBA] was synthesized by SET-DTLRP in water at 30 °C. The obtained macroinitiator was further reinitiated also by SET-DTLRP leading to the formation of the desired product. Several copolymers were synthesized in a 5L pilot reactor with different molecular weights and relative amounts of PBA and PVC. The possibility of synthesizing flexible materials made of PVC without using normal free plasticizes is extremely important for the industry. After processing the materials in a two-roll mill laboratorial equipment, the block copolymers were characterized concerning thermal and mechanical. The materials characterized in this study were prepared in a 5L pilot reactor under similar conditions to be used in industrial scale.  相似文献   

4.
Non-isothermal kinetics of the thermal degradation of poly(vinyl chloride) (PVC) prepared by a living radical polymerization (LRP) method was performed and compared with the results obtained from PVC prepared by the conventional free-radical process (FRP). Both differential and integral isoconversional methods were applied for determining the apparent activation energy of the dehydrochlorination stage. This study made clear noticeable differences in the thermal degradation of the PVC samples under analysis. The newly synthesized LRP-PVC material has a better thermal stability and presents substantial differences in the macroscopic kinetics of the dehydrochlorination process compared with conventional FRP-PVC. These differences were assessed in quantitative terms on the basis of the kinetic triplet [Ea,A,f(α)].  相似文献   

5.
Thermal degradation kinetics of poly(methylvinylsilylene-co-styrene) copolymers, viz., PMVSS-I to PMVSS-V obtained by reacting methylvinyldichlorosilane (MVDCS) and styrene in 1:0.25, 1:0.5, 1:1, 1:3 and 1:7 mole ratios under dechlorination conditions, using sodium, was studied by thermogravimetry. The homopolymer, poly(methylvinylsilane) (PMVS), synthesized from MVDCS using sodium was also subjected to the above study for comparative evaluation. The kinetic parameters for thermal degradation, viz., activation energy (E) and pre-exponential factor (A) for the above polymers were estimated by non-isothermal kinetic methods such as Mac Callum-Tanner (M-T), Horowitz-Metzger (H-M), Madhusudhanan-Krishnan-Ninan (MKN) and Coats-Redfern (C-R). The order for thermal degradation of PMVS was found to be almost 0. In the case of the copolymers, the order was 1 for PMVSS-I and 2 for PMVSS-II to PMVSS-V. The observed difference in the order for thermal degradation of PMVSS-I when compared to the other copolymers is attributed to the presence of polysilyl linkages in PMVSS-I. It was found that the activation energy and pre-exponential factor showed an increase in trend with increase in concentration of styrene in the copolymer system.  相似文献   

6.
Iodine transfer polymerization of vinyl acetate in bulk, initiated by α,α′-azobisisobutyronitrile at 80 °C, has been successfully performed in the presence of an α,ω-diiodo-poly(dimethylsiloxane) macrotransfer agent. The formation of a triblock copolymer PVAc-b-PDMS-b-PVAc has been proved by 1H NMR and size exclusion chromatography analyses. The analysis of the chain-ends has been performed using 1H NMR. It was found that a large amount of inverse chain-ends is present at the end of the polymerization. Moreover, the formation of several other side products by degradation of the functional chain-ends has been evidenced.  相似文献   

7.
The thermal stability and the temperature at which maximum degradation yields are detected were quite similar for both poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP). However, considerable differences among the thermal degradation products of both polymers were detected indicating a correlation between the polymer structure and the degradation mechanism. Direct pyrolysis mass spectrometry analyses revealed that P2VP degrades via a complex degradation mechanism, yielding mainly pyridine, monomer, and protonated oligomers, whereas depolymerization of P4VP takes place in accordance with the general thermal behaviour of vinyl polymers. The complex thermal degradation behaviour for P2VP is associated with the position of the nitrogen atom in the pyridine ring, with σ-effect.  相似文献   

8.
Four different xanthates containing either phosphonate or bisphosphonate moieties were synthesized with high degree of purity. These xanthates were used as chain transfer agents (CTA) in the RAFT/MADIX polymerization of vinyl acetate (VAc) to prepare end‐capped poly(VAc). The rate of VAc polymerization in the presence of these new CTAs was shown to be similar to that obtained with conventional xanthate, that is, (methyl ethoxycarbonothioyl) sulfanyl acetate. Good control of VAc polymerization was also obtained since the molecular weight increased linearly with monomer conversion for each phosphonate‐containing xanthate. Low‐PDI values were obtained, ascribed to efficient exchange during RAFT/MADIX polymerization. Cex value was therefore calculated to about 25, based on RAFT/MADIX of VAc in the presence of rhodixan A1/VAc adduct. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Thermal stability of poly(vinyl chloride)/poly(ethylene oxide) (PVC/PEO) blends has been investigated by thermogravimetric analysis (TGA) in dynamic and isothermal heating regime. PVC/PEO blends were prepared by hot-melt extrusion (HME). According to TG analysis, PEO decomposes in one stage, while PVC and PVC/PEO blends in two degradation stages. In order to evaluate the effect of PEO content on the thermal stability of PVC/PEO blends, different criteria were used. It was found that thermal stability of PVC/PEO blends depends on the blend composition. The interactions of blends components with their degradation products were confirmed. By using multiple heating rate kinetics the activation energies of the PVC/PEO blends thermal degradation were calculated by isoconversional integral Flynn–Wall–Ozawa and differential Friedman method. According to dependence of activation energy on degree of conversion the complexity of degradation processes was determined.  相似文献   

10.
The kinetics of the thermal degradation and thermal oxidative degradation of poly(p-dioxanone) (PPDO) were investigated by thermogravimetric analysis. Kissinger method, Friedman method, Flynn-Wall-Ozawa method and Coats-Redfern method have been used to determine the activation energies of PPDO degradation. The results showed that the thermal stability of PPDO in pure nitrogen is higher than that in air atmosphere. The analyses of the solid-state processes mechanism of PPDO by Coats-Redfern method and Criado et al. method showed: the thermal degradation process of PPDO goes to a mechanism involving random nucleation with one nucleus on the individual particle (F1 mechanism); otherwise, the thermal oxidative degradation process of PPDO is corresponding to a nucleation and growth mechanism (A2 mechanism).  相似文献   

11.
Radiation effects on the formation of conjugated double bonds in the thermal degradation of poly(vinyl chloride) (PVC) and poly(vinyl alcohol) (PVA) were investigated. Thin films of PVC and PVA were either irradiated with γ-rays at ambient temperature (pre-irradiation) and then subjected to thermal treatment, or irradiated at elevated temperatures (in situ irradiation). An extensive enhancement of the thermal degradation was observed for the pre-irradiation of the PVC films, which was more effective than the effect of the in situ irradiation at the same absorption dose. For the PVA degradation, however, the effect of the in situ irradiation was larger than that of the pre-irradiation. The results were explained and related mechanisms were discussed based on radiation-induced chemical reactions and their individual contributions to the thermal degradation behaviors of the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3089–3095, 1998  相似文献   

12.
The kinetics and mechanism of the thermal degradation of poly(diethyl fumarate) (PDEF) were studied by thermogravimetry, as well as by analysis of the thermolysis volatiles and polymer residue. The characteristic mass loss temperatures were determined, as were the overall thermal degradation activation energies of three PDEF samples of varying molar mass. Ethylene and ethanol were present in the thermolysis volatiles at degradation temperatures below 300 °C, while diethyl fumarate was also evidenced at higher degradation temperatures. The amount of monomer increased with increasing degradation temperature. The dependence of the molar mass of the residual polymer on the degradation time and temperature was established and the number of main-chain scissions per monomer unit, s/P0, calculated. A thermal degradation mechanism including de-esterification and random main-chain scission is proposed. The thermal degradation of PDEF was compared to the thermolysis of poly(ethyl methacrylate) (PEMA), poly(diethyl itaconate) (PDEI) and poly(ethyl acrylate) (PEA).  相似文献   

13.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
The influence of ethanolamine treatment of wood flour on the thermal degradation behaviour of PVC/wood flour composites was investigated. The decomposition of untreated and treated wood flour and PVC/wood flour composites was measured using thermogravimetric analysis (TGA). The TGA indicated an accelerated degradation of the composite after treatment in a temperature range between 240 and 350 °C. This was caused by a synergistic decomposition of treated wood flour and polymer. Additionally, the colour of the material was measured in order to analyse the effect of the treatment. The lightness of the composite was reduced with increasing ethanolamine concentration.  相似文献   

15.
A series of nickel and palladium complexes bearing (imino)pyridyl alcohol tridentate [N,N,O] ligands, 2-(ArNCMe)-6-{(HO)CR2}C5H3N (L1-L4), were synthesized and sufficiently characterized by elemental and spectroscopic analysis along with X-ray diffraction analysis. The X-ray diffraction demonstrated that five-coordinated nickel halide complexes (1a-4a and 1b) and six-coordinated nickel acetate complex (1c) were prepared, and cationic palladium complexes (1d and 2d) formed with the [PdCl4]2− counterion. All these complexes displayed high catalytic activities up to 1.883 × 107 g(PNB) mol−1(cat) h−1 (2d) for the vinyl polymerization of norbornene on treatment with excess methylaluminoxane (MAO), affording the vinyl-type PNBs with high molecular weights and relatively narrow molecular weight distributions. The parameters of reaction conditions, the type of metals and steric effects of coordinative ligands had influences on the catalytic properties.  相似文献   

16.
Thermal degradation behavior of poly(4-hydroxybutyric acid) (P(4HB)) was investigated by thermogravimetric and pyrolysis-gas chromatography mass spectrometric analyses under both isothermal and non-isothermal conditions. Based on the thermogravimetric analysis, it was found that two distinct processes occurred at temperatures below and above 350 °C during the non-isothermal degradation of P(4HB) samples depending on both the molecular weight and the heating rate. From 1H NMR analysis of the residual P(4HB) molecules after isothermal degradations at different temperatures, it was confirmed that the ω-hydroxyl chain-end was remained unchanged in the residual P(4HB) molecules at temperatures below 300 °C, while the ω-chain-end of P(4HB) molecules was converted to 3-butenoyl units at temperatures above 300 °C. In contrast, the majority of the volatile products evolved during thermal degradation of P(4HB) was γ-butyrolactone regardless of the degradation temperature. From these results, it is concluded that during the thermal degradation of P(4HB), the selective formation of γ-butyrolactone via unzipping reaction from the ω-hydroxyl chain-end predominantly occurs at temperatures below 300 °C. At temperatures above 300 °C, both the cis-elimination reaction of 4HB unit and the formation of cyclic macromolecules of P(4HB) via intramolecular transesterification take place in addition to unzipping reaction from the ω-hydroxyl chain-end. Finally, the primary reaction of thermal degradation of P(4HB) at temperatures above 350 °C progresses by the cyclic rupture via intramolecular transesterification of P(4HB) molecules with a release of γ-butyrolactone as volatile product. Moreover, we carried out the thermal degradation tests for copolymer of 93 mol% of 4HB with 7 mol% of 3-hydroxybutyric acid (3HB) to examine the effect of 3HB units on thermal stability of P(4HB).  相似文献   

17.
High molecular-weight poly(propylene carbonate) (PPC) can remain intact upon storage in ambient air or in water for 8 months once the catalyst is completely removed. Catalyst-free pure PPC is also thermally stable below 180 °C. At 200 °C, degradation occurs, mainly due to attack of the chain-ended hydroxyl group onto a carbonate linkage, through which the molecular weight distribution is broadened by simultaneous formation of low and high molecular weight fractions. Incomplete removal of hydrogen peroxide generated during the catalyst preparation results in a prepared polymer that contains a substantial amount of polymer chains grown biaxially from hydrogen peroxide, which gives rise to more severe thermal degradation. Experiments conducted in a weathering chamber at high temperature (63 °C) and high humidity (50%) revealed another degradation process involving chain scission through an attack of water molecules onto the carbonate linkage, which progressively and temporally lowers molecular weight.  相似文献   

18.
The non-isothermal degradation of poly(3-hydroxybutyrate) (PHB) and silver sulfide/poly(3-hydroxybutyrate) (Ag2S/PHB) nanocomposites was investigated using thermogravimetric (TG) analysis. In the composite materials, Ag2S caused the degradation of PHB at a lower temperature as opposed to that of neat PHB. Moreover, an increase Ag2S loading in the PHB decreased the onset temperature (Tonset) of thermal degradation, whereas it was raised upon augmenting the heating rate. From Kissinger plots, the observed trend of the degradation activation energy, Ed, was attributed to polymer-particle surface interactions and the agglomeration of Ag2S. The thermal degradation rate constant, k, was linearly related to the Ag2S loading in PHB. Thus, the Ag2S nanoparticles effectively catalyzed the thermal degradation of PHB in the Ag2S/PHB nanocomposites. Differential scanning calorimetry (DSC) data also supported the catalytic property of Ag2S.  相似文献   

19.
To clarify the influence of additives on the grafting phenomenon as well as the particle behavior more precisely, we carried out a model emulsion polymerization of vinyl acetate (VAc) in a 1% aqueous solution with ammonium persulfate (APS) using poly (vinyl alcohol) (PVA) as a protective colloid in the presence of additives. The addition of alcohol to the system remarkably affected the particle formation, especially grafting. This is thought to be attributed to competition between hydrogen abstraction from PVA and alcohol with a sulfate radical. Especially, the addition of acetone to the system decreased grafting to a great extent, resulting in an increase in the particle size together with an increase in the number of polymer molecules in a polymer particle. This result is thought to arise from a combination of electron abstraction from acetone with a sulfate radical and the chain-transfer reaction of the propagation radical with acetone.  相似文献   

20.
PVC was synthesized using a trichloroindenyltitanium-methylaluminoxane catalyst at room temperature, and its degradation was monitored along with a commercial sample at 160, 170 and 180 °C under air or nitrogen atmosphere. The process was followed by HCl evolution, yellowing index, colour formation and thermogravimetric analysis. The produced polymer had a lower molecular weight and higher surface area, compared with a commercial PVC, while 1H NMR and Tg values show minimal differences between materials. The HCl evolution degradation studies indicate that produced PVC has a lower thermal resistance than commercial PVC, while TGA reveals the opposite behaviour. Yellowing index and colour evaluation give evidence that nitrogen atmosphere and high surface area in produced PVC allow the polyene growth, whereas low surface area and air atmosphere generate shorter polyenes and chromophoric species. Differences in degradation performance are thought to be due to chemical origin, inherent morphology and differences in instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号