共查询到20条相似文献,搜索用时 15 毫秒
1.
P.S. SathiskumarGiridhar Madras 《Polymer Degradation and Stability》2011,96(9):1695-1704
A new family of castor oil based biodegradable polyesters was synthesized by catalyst free melt condensation reaction between two different diacids and castor oil with d-mannitol. The polymers synthesized were characterized by NMR spectroscopy, FT-IR and the thermal properties were analysed by DSC. The results of DSC show that the polymer is rubbery in physiological conditions. The contact angle measurement and hydration test results indicate that the surface of the polymer is hydrophilic. The mechanical properties, evaluated in the tensile mode, shows that the polymer has characteristics of a soft material. In vitro degradation of polymer in PBS solution carried out at physiological conditions indicates that the degradation goes to completion within 21 days and it was also found that the rate of degradation can be tuned by varying the curing conditions. 相似文献
2.
Lian Liu Zhi Yong Wei Min Qi Electromechanics Materials Engineering College Dalian Maritime University Dalian China School of Materials Science Engineering Dalian University of Technology Dalian China 《中国化学快报》2007,18(6):744-746
Aliphatic polyesters were synthesized via the ring opening polymerization of the corresponding lactones initiated with dibutylmagnesium both in bulk and in solution. The resulting polymers were characterized by 1H, 13C NMR, GPC and XRD. The results indicated that dibutylmagnesium is an effective initiator for the ring opening polymerization of lactones. 相似文献
3.
Synthesis and comparative biodegradability studies of three poly(alkylene succinate)s 总被引:2,自引:0,他引:2
Dimitrios N. Bikiaris George Z. Papageorgiou Dimitris S. Achilias 《Polymer Degradation and Stability》2006,91(1):31-43
Poly(alkylene succinates) were synthesized from succinic acid and aliphatic diols with 2 to 4 methylene groups by melt polycondensation. DSC, 1H NMR, WAXD and molecular weight measurements were used to characterise the polymers. Biodegradability studies of polyesters with the same average molecular weight, included enzymatic hydrolysis for several days using Rhizopus delemar lipase at pH 7.2 and 30 °C. DSC traces of biodegraded polyesters revealed that hydrolysis affected mainly the amorphous material. For all polyesters an increase in glass transition, melting point and heat of fusion was recorded. In the first days of enzymatic hydrolysis, fast rates of mass loss were observed accompanied by a rapid reduction of intrinsic viscosity and molecular weight, thus indicating a mixed endo- and exo-type hydrolysis mechanism. Afterwards, it turned to an exo-type mechanism, taking place in the crystalline phase, since after 15-25 days of enzymatic hydrolysis molecular weight was stabilized, while mass loss kept on decreasing though in a slower rate. End-group analysis revealed that carboxyl and hydroxyl groups increased due to ester bonds' scission. The biodegradation rates of the polymers decreased following the order PPSu > PESu ≥ PBSu and it was attributed to the lower crystallinity of PPSu compared to other polyesters, rather than to differences in chemical structure. Finally, a simple theoretical kinetic model was developed and Michaelis-Menten parameters were estimated. 相似文献
4.
Yuanyuan Fang Nan Zheng Fuquan Li Yubin Zheng Fangyuan Hu 《Polymer Degradation and Stability》2011,96(5):1029-1038
Well-defined aliphatic polyesters, polyglycolide (PGA), polylactide (PLA) and their copolymers (PLGA) were prepared by chain-growth polycondensation of potassium 2-bromocarboxylates in solid-liquid phase. The polymerization proceeded in a living fashion without any side reactions. The degrees of polymerization (Dp) of polyesters was in agreement with the feed ratio of monomer to initiator. The polymer, which was only composed of heptamer, octamer and nonamer, possessed a narrow molecular weight distribution. Furthermore, the end groups of polymers, such as allyl and phenyl units, were directly yielded during the polymerization for the further modifying and crosslinking. The synthesized polyesters with allyl end groups were successfully crosslinked, and the products possessed biodegradability in phosphate buffer solution at 37 °C. 相似文献
5.
Takuma KobayashiShuichi Matsumura 《Polymer Degradation and Stability》2011,96(12):2071-2079
Novel biodegradable and biobased thermoplastic elastomers, poly[dodecanolide-12-hydroxystearate (12HS)], poly(pentadecanolide-12HS) and poly(hexadecanolide-12HS) with Mws of 140,000-290,000 g mol−1 were prepared by the enzymatic copolymerization of a macrolide as the hard segment and methyl 12HS as the soft segment. Their thermal properties, such as Tm and Tc, were measured by DSC. Physicochemical and mechanical properties, such as crystallinity, were also measured. The polymer structures were analyzed with respect to the sequence of the two monomers by 1H NMR spectroscopy using an europium shift reagent. The randomness of the two monomer units in the polymer chain increased with the polymerization time. Both Young’s modulus and tensile strength decreased with increasing 12HS content in the copolymer. In contrast, elongation at break increased with increasing 12HS content, thus demonstrating the copolymers’ elastomeric properties. These copolymers showed biodegradabilities by activated sludge, which also increased with increasing 12HS content. 相似文献
6.
In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC). 相似文献
7.
Marija S Nikolic 《European Polymer Journal》2003,39(11):2183-2192
A series of aliphatic biodegradable polyesters modified with fumaric residues was synthesized by transesterification in the melt of dimethyl succinate, dimethyl fumarate and 1,4-butanediol. The amount of unsaturation, originating from the fumaric acid residues in the polyesters chains was varied from 5 to 20 mol%. The molecular structure and composition of the polyesters were determined by 1H NMR spectroscopy. The effects of the content of fumaric residues on the thermal and thermo-oxidative properties of the synthesized polyesters were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The degree of crystallinity was determined by DSC and wide angle X-ray scattering. The degrees of crystallinity of the unsaturated copolyesters were reduced, while the melting temperatures were higher in comparison to poly(butylene succinate). Biodegradation of the synthesized copolyesters was estimated in enzymatic degradation tests using a buffer solution with Rhizopus arrhizus lipase at 37 °C. Although the degree of crystallinity of the copolyesters decreases slightly with increasing unsaturation, the biodegradation is not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites has an influence on the biodegradation properties. The highest biodegradability was observed for the copolyesters containing 5 and 10 mol% of fumarate units. 相似文献
8.
Pawel G. Parzuchowski Martyna Grabowska Michal Jaroch Monika Kusznerczuk 《Journal of polymer science. Part A, Polymer chemistry》2009,47(15):3860-3868
This article describes the synthesis of a new glycerol‐based AB2 type monomer—ethyl{3‐[2‐hydroxy‐1‐(hydroxymethyl)ethoxy]propyl}thioacetate ( 4 ) and its application for the preparation of hyperbranched polyesters. The polycondensation of 4 has been performed over a wide range of catalysts and reaction conditions leading to polymers containing solely primary hydroxyl groups. The polycondensation progress has been monitored by means of 1H NMR. The degree of branching of the polymers showed to be in the range of 0.5 ± 0.03. The obtained polyesters easily undergo hydrolysis or alcoholysis and may be of interest as recycled materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3860–3868, 2009 相似文献
9.
In the present review the findings concerning the effect of nanofillers to biodegradation and enzymatic hydrolysis of aliphatic polyesters were summarized and discussed. Most of the published works are dealing with the effect of layered silicates such as montmorillonite (unmodified and modified with organic compounds), carbon nanotubes and spherical shape additives like SiO2 and TiO2. The degradation of polyester due to the enzymatic hydrolysis is a complex process involving different phenomena, namely, water absorption from the polyesters, enzymatic attack to the polyester surface, ester cleavage, formation of oligomer fragments due to endo- or exo-type hydrolysis, solubilization of oligomer fragments in the surrounding environment, diffusion of soluble oligomers by bacteria and finally consumption of the oligomers and formation of CO2 and H2O. By studying the published works in nanocomposites, different and sometimes contradictory results have been reported concerning the effect of the nanofillers on aliphatic polyesters biodegradation. Most of the papers suggested that the addition of nanofillers provokes a substantial enhancement of polyester hydrolysis due to the catalyzing effect of the existed reactive groups (–OH and –COOH), to the crystallinity decrease, to the higher hydrophilicity of nanofillers and thus higher water uptake, to the higher interactions, etc. However, there are also some papers that suggested a delay effect of nanofillers to the polyesters degradation mainly due to the barrier effect of nanofillers and the lower available surface for enzymatic hydrolysis. 相似文献
10.
Dimitrios N. Bikiaris George Z. Papageorgiou Eleni Pavlidou 《European Polymer Journal》2007,43(6):2491-2503
In the present study the miscibility behaviour and the biodegradability of poly(ε-caprolactone)/poly(propylene succinate) (PCL/PPSu) blends were investigated. Both of these aliphatic polyesters were laboratory synthesized. For the polymer characterization DSC, 1H NMR, WAXD and molecular weight measurements were performed. Blends of the polymers with compositions 90/10, 80/20, 70/30 and 60/40 w/w were prepared by solution-casting. DSC analysis of the prepared blends indicated only a very limited miscibility in the melt phase since the polymer-polymer interaction parameter χ12 was −0.11. In the case of crystallized specimens two distinct phases existed in all studied compositions as it was found by SEM micrographs and the particle size distribution of PPSu dispersed phase increased with increasing PPSu content. Enzymatic hydrolysis for several days of the prepared blends was performed using Rhizopus delemar lipase at pH 7.2 and 30 °C. SEM micrographs of thin film surfaces revealed that hydrolysis affected mainly the PPSu polymer as well as the amorphous phase of PCL. For all polymer blends an increase of the melting temperatures and the heat of fusions was recorded after the hydrolysis. The biodegradation rates as expressed in terms of weight loss were faster for the blends with higher PPSu content. Finally, a simple theoretical kinetic model was developed to describe the enzymatic hydrolysis of the blends and the Michaelis-Menten parameters were estimated. 相似文献
11.
Novel biodegradable-cum-crosslinkable polyesters end-capped by biomesogenic units, cinnamic acid (CA) and ferulic acid (FA), were synthesized via chain-growth polycondensation in solid-liquid phase. The chemical structure of synthesized polymers was characterized by Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance spectroscopy (1H NMR). The composition of polyesters, which was calculated by 1H NMR, was in agreement with the feed ratios. The thermal properties and crystallinity of polyesters were measured by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (WXRD) and polarizing-light microscopy (PLM). It was found that the polyesters possessed good crystallinity. Furthermore, the obtained polyesters could be crosslinked with methyl methacrylate (MMA), n-butyl acrylate (BA) and styrene (St) under thermal condition. The crosslinked products possessed degradability in phosphate buffer solution at 37 °C, which might be potentially applied as biomaterials. 相似文献
12.
End-functionalization of biodegradable polymers/oligomers based on L-lactide and glycolide by cholesteryl moiety was investigated. We established the feasibility of preparing the functionalized polymers/oligomers, Chol-(LG)m+n, through ring-opening copolymerization initiated by cholesterol bearing a hydroxyl group, without adding any catalyst. The functionalized polymers/oligomers of different molecular weights were obtained by controlling the feed ratio of the initiator cholesterol to the monomers. The chemical structure of end-functionalized polymers/oligomers was confirmed by FTIR and 1H NMR. Incorporation of cholesteryl moiety into the polymer chains induces liquid crystallinity in the resultant oligomers when the molecular chains are not very long. The enzymatic degradation studies, for all the samples, were carried out using enzyme, proteinase K. Interestingly, the enzymatic degradation of cholesteryl end-functionalized polymers/oligomers resulted in a lamella-like porous structure on the sample surface, which is altogether different from the commonly reported spherical-pore structure formed during the degradation of conventional polyesters. 相似文献
13.
The lipase-catalyzed synthesis and curing of polyesters that possess an unsaturated fatty acid moiety in the side chain is described. Lipase-catalyzed polymerization of divinyl sebacate and glycerol in the presence of unsaturated fatty acids produced a crosslinkable polyester possessing the unsaturated group. Candida antarctica lipase showed high catalytic activity for their synthesis. Effects of reaction parameters, such as enzyme amount, temperature, and feed ratio of substrates, have been systematically investigated. The polymerization under reduced pressure improved the polymer yield and molecular weight. Divinyl adipate was also enzymatically polymerized with glycerol and linoleic acid to give the crosslinkable polyester. The polymer obtained using linoleic or linolenic acid, was cured using a cobalt naphthenate catalyst or thermal treatment to give a crosslinked, transparent, polymeric film with a high-gloss surface. The cured film was characterized by pencil-scratch hardness testing and FT-IR spectroscopy. The biodegradability of the obtained film was evaluated by biochemical oxygen demand (BOD) measurement in an activated sludge.
14.
In this study results of thermal degradation of aliphatic hyperbranched polyesters, AHBP, and their derivatives, determined by non-isothermal thermogravimetric analysis in inert atmosphere (N2) are presented. The thermal stability of linear polyester PHPA (polyhydroxypivalic acid), additionally synthesized from hydroxypivalic acid, was also studied. AHBP samples, from second to tenth pseudo-generation, were synthesized starting from 2,2-bis(hydroxymethyl)propionic acid and di-trimethylolpropane. Modification of some selected AHBP samples was accomplished with the propionyl and benzoyl chloride, as well as with stearic acid. Thermal degradation of AHBP samples starts in the region between 250 °C and 275 °C and it ends around 430 °C. The thermal stability of AHBP samples increases with the number of end groups in the macromolecule, as well as with the modification of end groups with stearic acid and propionyl chloride. An AHBP sample of the fourth pseudo-generation, where all -OH end groups are modified with benzoyl chloride, shows lower thermal stability than the corresponding unmodified sample. The thermal stability of the linear polyester PHPA is lower than the thermal stability of the AHBP samples of the similar molar mass. The activation energies of thermal degradation for all synthesized AHBP samples were also calculated. 相似文献
15.
F. Kakali K. G. Gravalos J. K. Kallitsis 《Journal of polymer science. Part A, Polymer chemistry》1996,34(8):1581-1588
Rigid aromatic polyesters containing alkoxy or phenyl-substituted oligophenyls were prepared. Soluble polymers were obtained also in cases where phenyl-substituted quinquephenyl diols were combined with asymmetric phenyl-substituted terephthalic acid. The synthesized polyesters were characterized by viscosimetry, gel permeation chromatography, thermal analysis, and dynamic mechanical analysis. The temperature dependence of the intrinsic viscosity was sensitive to the type of side groups. Thermogravimetry has shown that polyesters with aromatic substituents were stable up to 380–400°C. The glass transition temperatures of the polyesters with aromatic side groups were in the 220–260°C range as determined by DSC. Polyesters with hexyloxy side chains show crystallinity. Dynamic mechanical analysis showed that in the cases where aromatic substituents were used to increase solubility, the obtained polymers have very useful mechanical properties at high temperatures. The polymer having the quinquephenyl unit in the main chain has an almost constant modulus up to 340°C. © 1996 John Wiley & Sons, Inc. 相似文献
16.
A series of poly(ester carbonate)s were obtained from adipic acid, 1,3-propanediol and diethyl carbonate in the presence of catalyst Ti(OBu)4 by polycondensation and transestrification process. The amount of monomeric composition was varied in order to get the polymer of different composition. The structure, average molecular weight and physical properties of poly(ester carbonate) were characterized by FT-IR, 1H NMR, solubility, solution viscosity, gel permeation chromatography, differential scanning calorimetry and XRD analysis. Biodegradability of poly(ester carbonate)s was investigated by hydrolytic (pH 7.2 and 11.5), enzymatic using Rhizopus delemar lipase at 37 °C and soil burial test. The biodegradation rate observed was more for poly(ester carbonate) containing 40% and 10% of diethyl carbonate due to their low crystallinity. 相似文献
17.
Chia-Jung Tsai 《European Polymer Journal》2008,44(7):2339-2347
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters with various compositions were synthesized through a direct polycondensation reaction with titanium tetraisopropoxide as the catalyst. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The compositions and the sequence distributions of the copolyesters were determined by analyses of 1H NMR and 13C NMR spectra. The sequence distributions of ethylene succinate units and trimethylene succinate (TS) units were found to be random. Their thermal properties were characterized using differential scanning calorimeter and thermal gravimetric analyzer. All of the copolymers exhibit a single glass transition temperature (Tg). There is no significant difference in the thermal stability among these polyesters. Wide angle X-ray diffractograms (WAXD) were obtained for polyesters which can be crystallized isothermally. The results of thermal analysis and the WAXD patterns indicate that the incorporation of TS units into PES significantly inhibits the crystallization behavior of PES. Additionally, the crystal pattern of PTS is quite different from that of PES. Dynamic mechanical properties of moldable polyesters were investigated using a Rheometer operated at 1 Hz. Below Tg, the incorporation of TS units into PES results in the decline of storage modulus. Above Tg, the effect of crystallinity on the storage modulus can be found. 相似文献
18.
In the past decade, Biodegradable materials that are capable of in situ formation have attracted increased attention for use in restorative orthopedic devices. In this communication, the surface erosion biodegradable polymers derived from 1.0G-polyamidoamine-double bond (PAMAM-DB) and methacrylated sebacic anhydrides (MSA) were evaluated over 2 months period under physiological conditions. Rectangular shaped samples were prepared by crosslinking the components using both chemical and photo initiators and exposure to UV light. The effects of PAMAM-DB: MSA ratio on local pH, water uptake, mass loss, and mechanical properties were explored. Polymers were characterized by 1H NMR, 13C NMR, FT-IR, compressive strength testing and SEM. It is found that copolymer with 50-60% PAMAM-DB (mass fraction) show more excellent mechanical properties compared with other formulations. Copolymers degraded mainly by surface erosion but the bulk erosion pattern also appeared at the initial time of degradation for formulation 30% and 40%. The material was expected to be useful for drug controlled delivery, tissue engineering scaffold and other biomedical applications. 相似文献
19.
Random copolymers of l-lactide (LA) and glycidol (G) were systematically synthesized via ring-opening polymerization (ROP). It was found that thermal properties of copolymers were strongly dependent on polymer composition which was successively controllable by changing comonomer feed ratio. The effects of polymerization conditions as well as polymer compositions on polymer properties were thoroughly studied. The biodegradation and enzymatic hydrolysis of copolymers were also examined. It was found that the biodegradability by an activated sludge of L/G copolymers was strongly affected by both polymer composition and crystallinity whereas their hydrolyzability by proteinase K was merely influenced by polymer composition. 相似文献
20.
K. ChrissafisK.M. Paraskevopoulos G.Z. PapageorgiouD.N. Bikiaris 《Journal of Analytical and Applied Pyrolysis》2011,92(1):123-130
The synthesis, characterization and thermal behavior of two biodegradable aliphatic polyesters poly(propylene azelate) (PPAz) and poly(propylene sebacate) (PPSeb) are described in the present work. The thermal degradation of both polyesters was studied using thermogravimetric analysis (TG) by the determination of their mass losses during heating. From the thermogravimetric curves it can be seen that both polyesters are thermally stable materials since PPAz has its highest decomposition rate at 411.3 while PPSeb at 413.6 °C. From the variation of activation energy (E) with increasing degree of conversion it is found that the polyester's decomposition proceeds with a complex reaction mechanism with the participation of at least two different mechanisms. To evaluate these mechanisms the TG, FTIR and a combination of TG-gas chromatography-mass spectrometry (TG/GC-MS) methods were used. From mass ions detection of formed decomposition compounds, it was found that the decomposition of both polymers takes place, mainly, through β-hydrogen bond scission and secondarily through α-hydrogen bond scission. The main decomposition products are aldehydes, alcohols, allyl, diallyl, and carboxylic acids. 相似文献