首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethylene-propylene-diene monomer (EPDM) rubber was exposed to an artificial weathering environment produced by fluorescent UV/condensation weathering device for different time periods. The surface chemical changes were detected by X-ray Photoelectron Spectroscopy (XPS) and Raman spectroscopy. The plausible aging mechanism of EPDM was proposed. The surface energy was calculated through contact angles of water and formamide measured by optical contact angle measuring device. The thermal stability was evaluated by thermo-gravimetric analysis (TGA).The results showed that oxygenated species such as C-O-C, CO and O-CO groups were formed in fluorescent UV/condensation weathering environment. EPDM aging occurred from EPDM surface and propagated to EPDM inner body. The surface energy of EPDM increased to a maximum at 36 days of aging and then decreased slowly. Fluorescent UV/condensation weathering environment does not affect the thermal stability of EPDM predominantly.  相似文献   

2.
Ethylene-propylene-diene monomer (EPDM) containing 5-ethylidene-2-norbornene (ENB) as diene was exposed to an artificial weathering environment produced by a xenon lamp light exposure and weathering equipment for different time periods. The surface chemical changes were detected by Specular Reflection Fourier Transform Infrared (SR-FTIR) spectroscopy, Raman spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The change in surface color, contact angle and morphology was monitored by spectrophotometer, optical contact angle measuring device and Scanning Electron Microscope (SEM). Furthermore, surface energy was calculated through contact angles of water and formamide. The results showed that hydroxyl, carbonyl and ester groups were formed during exposure to this artificial weathering environment. EPDM surface became redder, yellower and lighter in the first stage of aging and then remained almost unchanged. The contact angles of water and formamide decreased to a minimum and then increased slowly. The surface degradation is a zero order reaction. In addition, the plausible degradation mechanism was proposed.  相似文献   

3.
Nitrile-butadiene rubber (NBR) was exposed to an accelerated thermal aging environment produced by an air-circulating oven for different time periods. NBR aging was evaluated by morphology, crosslink density, mechanical properties, chemical changes and thermal stability. The results showed that the surface damage of NBR turned severe and inhomogeneous, and the aging degree was most serious on the edge region of voids. Crosslinking reactions mainly occurred in the aging process. The tensile strength increased with increase in crosslink density up to a maximum value and thereafter decreased with further increase in crosslink density. X-ray Photoelectron Spectroscopy (XPS) and Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC/MS) analysis demonstrated that hydroxyl groups were formed and the additives migrated from inner to surface of NBR samples. In addition, the thermogravimetric analysis (TGA) indicated that the thermal stability of NBR did not significantly change in the accelerated thermal aging environment.  相似文献   

4.
A bend stiffener grade polyurethane (PU) elastomer was physically and mechanically characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis and tensile tests. The material was then exposed to artificial seawater and weather up to 12 months to evaluate its stability as bend stiffeners are exposed to this type of environment during offshore operation. The characterization of aged samples was performed comparing the ageing effects on the chemical structure, thermal stability and mechanical properties with those of the non-aged material. The mass variation of aged samples immersed in artificial seawater was also measured. A slight change in the chemical structure led to a color change from dark green to brown in the samples exposed to natural weathering for 12 months. Increases in thermal stability, stiffness and strength characteristics were also verified, which may be associated to additional crosslink formation. In contrast, a significant mechanical property drop was observed for the artificial seawater aged PU, being attributed to a plasticizer effect induced by the ageing fluid. The stress-strain curves were adjusted with the Mooney-Rivlin model allowing the crosslink density estimation. The weather aged PU presented higher crosslink density than seawater aged and non-aged samples.  相似文献   

5.
The vulcanization characteristics of natural rubber (NR)/ethylene-propylene-ethylidenenorbornene (EPDM) rubber blends were studied in the presence of thioacetate-(EPDMTA) or mercapto-modified EPDM (EPDMSH), using oscillating disk rheometer. The effect of both functionalized EPDMs was investigated in unaccelerated-sulfur curing system and accelerated-sulfur curing systems containing 0.4 and 0.8 phr of MBTS. Both EPDMTA and EPDMSH act as accelerator agent in the curing process, as indicated by the higher values of cure rate index and lower values of activation energy of vulcanization. A substantial increase of the crosslink density has been also observed in EPDMSH-modified blends. Both EPDMTA and EPDMSH resulted in an increase in tensile strength, but the best performance has been achieved with EPDMSH, probably because of the increase of crosslink density associated to the reactive compatibilization promoted by the reaction between mercapto groups and rubber matrix. The best ageing resistance has been observed in EPDMTA-modified blends.  相似文献   

6.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

7.
Crosslink network evolution of brominated butyl rubber (BIIR)/ethylene–propylene–diene-monomer rubber (EPDM) blends during peroxide vulcanization is studied at a meso-scale level. In this work, EPDM is added as a co-agent to increase the crosslink density of BIIR vulcanization. With increasing EPDM content from 0 to 20 phr, the maximum torque of BIIR/EPDM compounds during vulcanization increases by 73%, reaching to 3.40 dNm. Vulcanization kinetic study shows that addition of EPDM favors to the crosslinking of BIIR compound. Meanwhile, the addition of 20 phr EPDM contributes to an increase in the crosslink density of BIIR/EPDM(80/20) vulcanizate, avoiding downward trend at post-cure period in comparison with BIIR only. Crosslink network evolution of BIIR/EPDM blends is divided into three periods during peroxide vulcanization at 150 °C. The role of EPDM in the crosslink network evolution is studied by proton nuclear magnetic resonance, and a “network patching” mechanism is proposed in which EPDM is implied to work as patch on damaged crosslink network resulted from the degradation nature of BIIR.  相似文献   

8.
《European Polymer Journal》1986,22(4):341-345
The effects of crosslink density and crosslink type on the tensile and tear strengths of gum NR, SBR and EPDM vulcanizates have been studied. Over a wide range of crosslink densities, sulphur vulcanizates for these rubbers have higher strengths than the peroxide vulcanizates. These results show that crystallizability of the rubbers is not an important factor in producing separate curves in the strength vs crosslink density plots. Tear strengths appear to be more sensitive to crosslink structures than tensile strengths. A composite plot shows that tensile strengths are approximately proportional to tear strengths for all three rubbers.  相似文献   

9.
The accelerated ultraviolet aging behavior of poly(1,3,4-oxadiazole) fibers (POD fibers) exposed to artificial environment for different durations were studied. The influence of ultraviolet light on the intrinsic viscosity, structure, appearance and morphology, mechanical properties of POD fibers were investigated during aging by ATR-FTIR and UV-spectra, XPS, WXRD, SEM and tensile strength tester. The results revealed that the structure and properties of POD fibers were affected by UV light. Tensile strength and breaking elongation of POD fibers were severely decreased after 48 h UV light irradiation, and the change of intrinsic viscosity indicated that only degradation but not crosslink occurred. Disruption of oxadiazole rings and formation of carbonyl and amide were observed. UV aging process in nitrogen atmosphere suggested that the oxygen was indispensable and the essence of POD UV aging was photo-oxidation process. POD was amorphous and the recrystallization on surface was present after UV aging due to degradation. Morphology of POD fiber surface was damaged after UV aging.  相似文献   

10.
Ethylene propylene diene rubber‐fullerene (EPDM/C60) composite, partially crosslinked by ultraviolet (UV) radiation, was prepared and characterized for crosslink density, mechanical properties and thermal behavior. FT‐IR analysis showed peak disappearance at 1688 cm?1, corresponding to the unsaturation of EPDM, and the appearance of new peaks relating to the formation of oxidation products of C60, such as epoxide, keto, aldehyde and carboxylic groups. Solubility studies demonstrated the dissolution of pristine EPDM in toluene even after a longer period of UV exposure, whereas EPDM/C60 composite became insoluble and/or swollen after 6 hr of UV exposure, indicating the formation of partial crosslinking between EPDM and C60. Differential scanning calorimetry (DSC) measurements revealed an increase in the glass transition temperature peak of UV‐cured EPDM. Thermogravimetric analysis (TGA) showed that UV exposure reduced the thermal decomposition temperature of EPDM/C60, pristine EPDM and dicumyl peroxide (DCP)‐cured EPDM. The modulus, tensile stress and elongation at break of EPDM/C60 composites were greatly influenced by the duration of UV irradiation. Comparison of UV‐cured EPDM/C60 composite with DCP‐cured EPDM confirmed the superior strength properties of the former system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Accelerated aging and stabilization of radiation-vulcanized EPDM rubber   总被引:2,自引:0,他引:2  
The effect of different antioxidants and their mixtures on the thermal aging and accelerated weathering of γ-radiation vulcanized EPDM rubber in presence of crosslinking coagent, was investigated. The compounds used were either a synergistic blend of phenolic and phosphite antioxidants, i.e. 1:4 Irganox 1076: Irgafos 168 or a blend of arylamine and quinoline type antioxidants, i.e. 1:1 IPPD:TMQ, at fixed concentration. Tinuvin 622 LD hindered amine light stabilized (HALS) was also used. The response was evaluated by the tensile strength and elongation at break for irradiated samples after thermal aging at 100°C for 28 days and accelerated weathering (Xenon test) up to 200 h.  相似文献   

12.
PP/EPDM共混物热氧稳定性研究   总被引:2,自引:0,他引:2  
通过热氧加速老化的方法研究了不同的EPDM含量和抗氧剂对聚丙烯和三元乙丙橡胶共混物(PP/EPDM)热氧稳定性的影响.通过对老化前后试样的力学性能变化分析,热失重(TG)分析和扫描电镜(SEM)分析,结果表明:在热氧加速老化的初期,PP/EPDM共混物的拉伸强度随着时间的增长呈逐渐上升的趋势;在老化中期,共混物的拉伸强度变化不大;在老化后期,共混物的拉伸强度逐渐下降.在整个老化过程中,断裂伸长率都呈逐渐下降的趋势.而随着EPDM含量的增加,相应共混物的拉伸强度和断裂伸长率的下降减缓;相应共混物的分解温度得到较大的提高;抗氧剂的加入,能进一步提高共混物的热氧稳定性.  相似文献   

13.
The interaction between precipitated silica and chloroprene rubber (CR) was investigated using a nuclear magnetic resonance (NMR) technique. The results reveal that the silanol groups on silica surface could chemically react with CR. Crosslinking of CR is therefore possible in the presence of silica at high temperature. The effects of silica and ethylene thiourea (ETU) loadings on properties of the silica-filled CR were thereafter investigated. With increasing silica loading, the compound viscosity increases considerably due to the dilution effect. As silica could act as a curative for CR, increasing silica loading results in both faster cure rate and increased crosslink density. The optimum tensile strength is found at approximately 30 phr of silica loading. The results also show that silica loading has little effect on most aging properties, except the relative modulus in which it increases rapidly with increasing silica loading due to the post curing effect. Similar to the effect of silica loading, the compound viscosity, cure rate and crosslink density are all increased with increasing ETU loading. The tensile strength is, on the other hand, slightly affected by ETU loading. Exception is found at high loading where the tensile strength drops noticeably. Interestingly, aging resistance of the vulcanizate is found to improve with the addition of ETU. Explanation is given by the hindrance capability of ETU to post curing.  相似文献   

14.
Degradation of ethylene-propylene-diene (EPDM) rubber seal used for supplying water system was investigated through spectroscopic techniques. The EPDM seal was utilized at 20-45 °C for about 3 years. It was characterized by solid state nuclear magnetic resonance spectroscopy equipped with field gradient fast magic angle spinning probe and Fourier transform-infrared spectroscopy. Morphology of the EPDM seal was observed by scanning electron microscopy, focused ion beam scanning electron microscopy and electron probe micro-analysis. The hardness and crosslink density of EPDM seal were reduced by a factor of one-half after using for supplying water system, even though it contains little amount of carbon-carbon double bond. Surface of the EPDM seal was significantly damaged by water. The degradation of EPDM seal was associated with chain scission and oxidation of EPDM.  相似文献   

15.
Two polybenzoxazines are cured in an autoclave from the polyfunctional benzoxazine monomers, 8,8′-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine) and 6,6′-bis(2,3-dihydro-3-phenyl-4H-1,3-benzoxazinyl) ketone. The density and tensile properties of these polybenzoxazines are measured at room temperature. Dynamic mechanical tests are performed to determine the Tg, crosslink density, and the activation enthalpy of the glass-transition process for these two polybenzoxazines. The effect of postcure temperature on the Tg of the polymers is investigated and discussed in terms of crosslink density. Fourier transform infrared (FTIR) spectroscopy is also applied for the molecular characterization of the curing systems. Thermal properties of these polybenzoxazines are studied in terms of isothermal aging and decomposition temperature via thermogravimetric analysis. These two polybenzoxazines show mechanical and thermal properties similar to or better than bismaleimides and some polyimides. They also show very high char yield after being carbonized in a nitrogen atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3257–3268, 1999  相似文献   

16.
The crosslink density and sulfur-ranks of crosslinks formed during vulcanization of a carbon black reinforced ENB–EPDM compound are analyzed as a function of the selected curing system: Conventional, Semi-Efficient, Efficient and Nitrosamine-safe. Each vulcanization system results in a specific crosslink concentration and sulfur-rank distribution: mono-, di- and polysulfidic of nature. Tensile properties, tear strength and compression set of the vulcanized materials turn out to practically only depend on overall crosslink density, as resulting from the particular curing systems and vulcanization times. All trends in properties coincide when plotted as a function of the overall crosslink density. Surprisingly, the crosslink distribution: the ratios of mono- to di- and polysulfidic crosslinks, has only a minor effect on these properties. The differences in sulfur-rank as a function of the chosen vulcanization system turn out to be too small for EPDM to have a significant effect.  相似文献   

17.
用SEM,TEM,DSC,WAXD和有效网链密度(v_e)测定,研究了共混时间长短和返炼对EPDM/PP共混物结构和性能的影响。两相分散随共混时间和返炼而更趋均匀。随共混时间,PP结晶度(x_c)先行降低然后升高,抗张强度正相反,v_e则降低x_e和v_e返炼后总是较一次共混降低。影响强度的因素主要是两相分散均匀和两相界面的相互渗透。  相似文献   

18.
The gas (oxygen and nitrogen) transport characteristics of the interpenetrating polymer network (IPN) membranes of polyurethane/polystyrene were studied. The effect of synthesis temperature, composition, molecular weight of the polyol and aromatic content (of MDI, TDI and HDI) on the gas permeability were analyzed. In the IPN synthesis, first polyurethane was polymerized thermally, and then polystyrene was polymerized by photolytic methods at different temperatures. The permeability coefficient decreased and the separation factor increased with decreasing synthesis temperature due to the miscibility increase. The permeability coefficient showed a minimum value and the separation factor showed a maximum value at ca.25 wt.% polyurethane composition. The permeability coefficient decreased and the separation factor increased with increasing aromatic content in polyurethane component. The morphology and density behavior of the IPN's agreed well with the permeability data. The tensile strength of the membrane increased with decreasing synthesis temperature and with increasing crosslink density and polystyrene content.  相似文献   

19.
The aging of a commercial filled siloxane polymeric composite in states of high stress and Co-60 γ-radiation exposure has been studied. DC-745 is a commercially available silicone elastomer consisting of dimethyl, methyl-phenyl, and vinyl-methyl siloxane monomers crosslinked with a peroxide vinyl specific curing agent. It is filled with ∼ 30 wt.% mixture of high and low surface area silicas. This filled material is shown to be subject to permanent set if exposed to radiation while under tensile stress. Tensile modulus measurements show that the material becomes marginally softer with combined radiation exposure and tensile strain as compared to material exposed to radiation without tensile strain. In addition, the segmental dynamics as measured by both uniaxial NMR relaxometry and Multiple Quantum NMR methods indicate that the material undergoes radiatively-induced crosslinking in the absence of tensile strain. In the presence of tensile strain, relaxometry and MQ NMR studies show a strain dependent change in the dynamic order parameter and in the number of polymer chains associated with the filler surface. Solvent swelling measurements indicated no dependence on network crosslink density on strain ratio. Variable tau CPMG echo experiments indicate that a fraction of the polymer chains diffuses through areas of strong magnetic field gradients both at the filler-polymer interface and adjacent to micro-voids within the network. The population of the polymer chains influenced by the field gradients was observed to be dependent on the cumulative dose and degree of tensile strain applied during exposure. The relative change in crosslink density from the NMR and solvent swelling data deviates from that predicted from the Tobolsky model, particularly at higher doses. The likely reasons for this deviation are changes in the filler-polymer interface, increasing deviation from Gaussian chain statistics, and/or the formation of increased numbers of elastically ineffective network chains.  相似文献   

20.

A polymeric hindered amine light stabilizer (HALS), wherein the hindered amine functionality was attached to the maleic anhydride graft ethylene‐propylene‐diene terpolymer (EPDM) was synthesized. This involves photoinduced grafting of maleic anhydride groups on unsaturated sites of EPDM, followed by incorporation of amino terminated HALS. The grafting and functionalization reactions were characterized by FTIR and 13C NMR spectroscopy. The surface changes upon degradation are studied by SEM. The photostabilizing efficiency of this polymeric HALS was studied and compared with conventional HALS under accelerated weathering conditions. The HALS grafted EPDM showed significantly improved photostabilizing efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号