共查询到20条相似文献,搜索用时 15 毫秒
1.
Everton Luiz de PaulaValdir Mano Fabiano Vargas Pereira 《Polymer Degradation and Stability》2011,96(9):1631-1638
This paper reports the preparation of bionanocomposites based on poly(d,l-lactide) and cellulose nanowhiskers (PDLLA/CNWs) and studies the influence of the CNWs on the hydrolytic degradation behavior of the polylactide. The hydrolytic degradation process was studied in a phosphate buffer medium through the sample weight loss and also by FTIR, DSC and TGA measurements. The presence of CNWs induced a strong delay in the hydrolytic degradation of the PDLLA, even when the concentration of the nanofillers was only 1%. This effect was related to the physical barrier created by the highly crystalline CNWs that inhibited water absorption and hence retarded the hydrolytic degradation of the bionanocomposites. In addition, the incorporation of cellulose nanocrystals in the PDLLA also made the biopolymer more thermally stable, increasing the initial temperature of mass loss even after the degradation in phosphate medium. The results presented here show the possibility of controlling the biodegradability and prolonging the service life of a polylactide through the incorporation of a small quantity of nanofillers obtained from renewable materials. 相似文献
2.
Triptolide (TP), which has immunosuppressive effect, anti-neoplastic activity, anti-fertility function and severe toxicities on digestive, urogenital, blood circulatory system, was used as a model drug in this study. TP-loaded poly (d,l-lactic acid) (PLA) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method (modified-SESD method). Dynamic light scattering system (DLS), transmission electron microscope (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), X-ray powder diffractometry and Fourier transform infra-red spectroscopy (FT-IR) were employed to characterize the nanoparticles fabricated for size and size distribution, surface morphology, the physical state of drug in nanoparticles, and the interaction between the drug and polymer. Encapsulation efficiency (EE) and the in vitro release of TP in nanoparticles were measured by the reverse phase high-performance liquid chromatography (RP-HPLC). The produced nanoparticles exhibited a narrow size distribution with a mean size of approximately 150 nm and polydispersity index of 0.088. The morphology of the nanoparticles exhibited a fine spherical shape with smooth surfaces without aggregation or adhesion. TP-entrapped in nanoparticles was found in the form of amorphous or semicrystalline. It was found that a weak interaction existed between the drug and polymer. In all experiments, more than 65% of EE were obtained. The in vitro release profile of TP from nanoparticles exhibited a typical biphasic release phenomenon, namely initial burst release and consequently sustained release. In this case, the particle size played an important role for the drug release. The modified-SESD method was a potential and advantage method to produce an ideal polymer nanoparticles for drug delivery system (DDS). 相似文献
3.
Low molecular weight poly(lactic acid) was synthesized by direct polycondensation of lactic acid. The oligomers were characterized by viscometry, light scattering, and gel permeation chromatography (GPC). The swelling behaviour of tablets made of the above polymer immersed in buffer solutions at 37 °C was studied. In the same experiments, the hydrolytic stability of d,l-PLA was assessed by measuring the weight loss after drying the tablets. In order to inhibit any degradation due to bacteria, formaldehyde was added in the solution as biostatic factor. The effect of an incorporated drug on the swelling behaviour of d,l-PLA tablets was also considered. It was found that the incorporation of drug in d,l-PLA tablets increases their swelling index, probably due to the creation of additional porosity in the specimens or other interaction between drug and polymeric matrix. 相似文献
4.
Maria Laura Di Lorenzo 《European Polymer Journal》2005,41(3):569-575
This article contains a detailed analysis of the crystallization behavior of poly(l-lactic acid) (PLLA). Crystallization rates of PLLA have been measured in a wide temperature range, using both isothermal and non-isothermal methods. The combined usage of multiple thermal treatments allowed to obtain information on crystallization kinetics of PLLA at temperatures almost ranging from glass transition to melting point. Crystallization rate of PLLA is very high at temperatures between 100 and 118 °C, showing a clear deviation from the usual bell-shaped curve. This discontinuity has been ascribed to a sudden acceleration in spherulite growth, and is not associated to morphological changes in the appearance of PLLA spherulites. Experimental data of spherulite growth rates of PLLA have been analyzed with Hoffman-Lauritzen method. Applicability and limitations of this theoretical treatment have been discussed. 相似文献
5.
Swapan Kumar Saha 《Polymer Degradation and Stability》2006,91(8):1665-1673
Films of poly(l-lactic acid) (PLLA) with different number-average molecular weights (Mn) and d-lactide unit contents (Xd) were made amorphous and the effects of molecular weight and small amounts of d-lactide units on the hydrolytic degradation behavior in phosphate-buffered solution at 37 °C of PLLA were investigated. The degraded films were investigated using gravimetry, gel permeation chromatography, polarimetry, differential scanning calorimetry, X-ray diffractometry, and tensile testing. To exclude the effects of crystallinity on the hydrolytic degradation, the films were made amorphous by melt-quenching. The incorporation of small amounts of d-lactide units drastically enhanced the hydrolytic degradation of PLLA. In the period of 0-32 weeks, the hydrolytic degradation rate constant (k) of PLLA films increased with increasing Xd, while the k values did not depend on Mn. This means that the effects of Xd on the hydrolytic degradation rate of the films are higher than those of Mn. In contrast, in the period of 32-60 weeks neither Xd nor Mn was a crucial parameter to determine k values, probably because in addition to these parameters the differences in the amount of catalytic oligomers accumulated in films and crystallinity affect the hydrolytic degradation behavior of the films. The initially amorphous PLLA films remained amorphous even after the hydrolytic degradation for 60 weeks. 相似文献
6.
Carrie L.K. Gilbert 《Tetrahedron》2005,61(35):8339-8344
l,l-Puromycin, a diastereomer of the natural peptidyl nucleoside antibiotic puromycin, has been synthesized from l-xylose in 13 steps. 相似文献
7.
Xiaobo Liu Yaobang Zou Wenting Li Wenjin Chen 《Polymer Degradation and Stability》2006,91(12):3259-3265
Poly(d,l-lactide) (PDLLA) degraded at processing temperature under air and nitrogen. A random chain scission model was established and used to determine the activation energy Ea, and FT-IR, 1H and 13C NMR were used to elucidate the degradation behavior under different atmospheres. Results showed that there were two to three stages. The 1st stage was dominated by the oligomers containing carboxylic acid groups and hydroxyl groups, during which oxygen and nitrogen had little effect on the degradation, thus they share similar Ea. When the oligomers were consumed over or evaporated, the 2nd stage began, and oxygen had a promoting effect on the thermo-oxidation process, resulting in the great decrease in Ea. The third stage of PDLLA was observed when it degraded under nitrogen over 200 °C, which was caused by the appearance of carboxylic acid substance. 相似文献
8.
Paragkumar N. Thanki 《European Polymer Journal》2005,41(7):1546-1553
The predominant mechanism of the hydrolytic degradation of oligo(d,l-lactide)-grafted dextrans in phosphate buffer was followed by quantifying both released dextran and lactic acid from the copolymers. The studied amphiphilic copolymers, with well-defined structure, exhibited various oligo(d,l-lactide) weight fractions (FOLA) while having a quite high extent of free hydroxyl groups (>90%). Depending on their FOLA, oligo(d,l-lactide)-grafted dextrans were soluble either in water or in organic solvents (THF, toluene, …) and different prevailing mechanisms of hydrolytic degradation were observed. The copolymer soluble in THF, with longer oligo(d,l-lactide) grafts and higher FOLA, was found to degrade via a particular mechanism by which the greatest part of dextran was released into buffer medium during the first two weeks of degradation. During the initial stage of degradation, the hydrophilicity of dextran backbone was considered to be the main driving force for the hydrolytic cleavage of the ester linkage between backbone and grafts. Released oligo(d,l-lactide) grafts were found to be degraded via chain-end degradation or random degradation depending on their solubility in buffer medium. In case of water-soluble copolymers with shorter oligo(d,l-lactide) grafts and lower FOLA, the chain-end degradation was exclusively observed. 相似文献
9.
Toru Motoyama Takayuki Tsukegi Yoshihito Shirai Takeshi Endo 《Polymer Degradation and Stability》2007,92(7):1350-1358
To control the depolymerization of poly-l-lactic acid (PLLA) into l,l-lactide, effects of altering the physical and chemical properties of magnesium oxide (MgO) on its ability as a catalyst were investigated. Four kinds of MgO particles: MgO-heavy, 0.2, 0.05, and 0.01 μm, having primary particles of different dimensions, surface areas, and chemical structures/species were used. Thermo-gravimetric profiles of PLLA/MgO composites shifted into a lower temperature range due to an increase in the catalytic surface area resulting from a decrease in the dimensions of the MgO particles. However, decreasing the dimensions caused frequent side reactions with unfavorable products: cyclic oligomers and meso-lactide, due to the presence of different chemical structures/species. Heat treatment of the MgO particles not only effectively suppressed the oligomer production and enhanced the l,l-lactide production, but also accelerated the meso-lactide production at lower temperatures. These results indicate that the surface properties of MgO considerably influence the depolymerization of PLLA, with the catalytic behavior of MgO controllable by heat treatment and selection of the depolymerization conditions. 相似文献
10.
Gábor RadicsRaul Pires Beate KokschSalah M El-Kousy Klaus Burger 《Tetrahedron letters》2003,44(5):1059-1062
Efficient syntheses of l-homoisoserine and d,l-homoisocysteine derivatives starting from l-malic and d,l-thiomalic acid using hexafluoroacetone as protecting and activating agent are described. The new compounds are interesting building blocks for the preparation of non-natural peptides and depsipeptides as well as for the construction of new GABA derivatives. 相似文献
11.
An efficient method for the stereoselective synthesis of l-ribose was accomplished starting from commercially inexpensive d-fructose. The intermediates in the process can serve as versatile precursors for the preparation of l-nucleoside analogues. 相似文献
12.
Nobuhiko Yasuda Takayuki Tsukegi Haruo Nishida 《Polymer Degradation and Stability》2010,95(7):1238-3304
To obtain details of poly(l-lactic acid) (PLLA) photodegradation behavior, PLLA films were irradiated by UV-C light (λ = 253.7 nm) to directly excite carbonyl groups, resulting in a rapid decrease in the molecular weight accompanying a gradual decrease in the optical purity of monomeric units in the chains. The racemization during the photodegradation was first detected as a result of the chain scission by irradiation. From quantitative analyses of the molecular weight and the monomeric unit composition, it was found that the chain scission ratio and the d-lactate unit ratio increased in parallel during the irradiation, suggesting that approximately one d-lactate unit formed for every chain scission. From a mechanistic consideration, the racemization equilibrium was proposed to occur at both carboxyl and hydroxyl chain ends. 相似文献
13.
Oligomers of l-lactic acid and citric acid (PLCA) were synthesized by reacting lactic acid with citric acid in the presence of stannous chloride. The chemical compositions of these multicarboxylated oligomers were verified by FT-IR and 1H-NMR spectroscopy. The thermal characteristics of the oligomers, such as glass transition temperature Tg, melting temperature Tm and melting enthalpy, were confirmed by DSC. The crystallinity of the oligomers were determined by DSC and WXRD. Meanwhile, the acid-base surface characteristics of PLCA have been determined by contact angle. The results implicated that these oligomers may be used to entrap the cospecies on PLLA surface in tissue engineering. 相似文献
14.
Biodegradable poly(l-lactic acid) (PLLA) nanofiber was prepared by a carbon dioxide (CO2) laser supersonic drawing which was carried out by irradiating the laser on an as-spun fiber in a supersonic jet. The supersonic jet was generated by blowing off air into a vacuum chamber from a fiber supplying orifice. The flow velocity from the orifice can be estimated by applying Graham’s theorem from the pressure difference between the atmospheric pressure and the pressure of the vacuum chamber. The fastest flow velocity estimated was 396 m s−1 when the chamber pressure was 6 kPa. The PLLA nanofiber having an average diameter of 0.132 μm was obtained when the supersonic drawing was carried out by irradiating the laser at 177 W cm−2 on the as-spun fiber supplied at 0.1 m min−1 in the vacuum chamber at 6 kPa. The obtained nanofiber had a draw ratio of about 323,000 and a degree of crystallinity of 45%, and its diameter uniformity was high. The CO2 laser supersonic drawing was a new route for preparation of various nanofibers without using any solvent. 相似文献
15.
Guang-Xin Chen 《European Polymer Journal》2006,42(2):468-472
A strategy was attempted to produce high-molecular-weight poly(l-lactic acid) (PLLA) through the direct condensation polymerization of l-lactic acid in bulk state. Polymerizations were carried out with titanium(IV) butoxide (TNBT) as a catalyst employing different duration of decompression, esterification and polycondensation. The molecular weights were characterized by using the gel permeation chromatography (GPC). The stereosequences were analyzed from the 13C NMR spectra on the basis of the triad fractions. 相似文献
16.
Ring-opening suspension polymerization of l-lactide in supercritical CO2 (scCO2) was investigated in the presence of different stabilizer architectures based on poly(dimethyl siloxanes) (PDMS). Two amphiphilic AB type block copolymers, a graft copolymer, and an ester-capped PDMS were selected to find their efficacy as stabilizers for the synthesis of poly(l-lactide) (PLLA) in scCO2. The stabilizer’s efficiency was analyzed in terms of the molecular weight, yield, and particle morphology of PLLA. The block copolymers, poly(dimethylsiloxane)-b-poly(acrylic acid) (PDMS-b-PAA) and poly(dimethylsiloxane)-b-poly(methacrylic acid) (PDMS-b-PMA) were found to be effective, leading to the formation of fine, discrete PLLA microparticles. On the other hand, the graft copolymer, poly(dimethylsiloxane-g-pyrrolidonecarboxylic acid) (PDMS-g-PCA) and acetylated PDMS (PDMS-OAc) failed to give an enough stabilization to the PLLA due to their short polymer-philic chains, resulting in hard agglomerates. 相似文献
17.
Crystalline morphologies of spin-coated poly(l-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 °C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition, effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed. 相似文献
18.
New low-molecular weight gelators based on l-valine and l-isoleucine, which have various terminal groups such as ester, carboxyl, and carboxylate, function as a good organogelator that form an organogel in many organic solvents. In addition, the sodium salt compounds form not only organogels but also a hydrogel in the presence of a cationic surfactant. 相似文献
19.
Speed of sound and density values for ternary systems (amino acid + salt + water): l-isoleucine/l-proline/l-glutamine in aqueous solutions of 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 have been measured for several concentrations of amino acids at different temperatures (303.15, 308.15, 313.15, 318.15, and 323.15 K). Using speed of sound and density data, the thermodynamic parameters such as isentropic compressibility (κs), change in isentropic compressibility (Δκs) and relative change (Δκs/κ0) in isentropic compressibility have been computed. The isentropic compressibility values decrease with increase in the amino acid concentration as well as with temperature. The decrease in κs values with increase in concentration of l-isoleucine/l-proline/l-glutamine in 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 has been ascribed to an increase in the number of incompressible zwitterions in solutions, and the formation of ‘zwitterions-ions’ and ‘zwitterions-water dipole’ entities in solutions. The decrease in κs values with increase in temperature has been attributed to the corresponding decrease of κrelax (a relaxational part of compressibility), which is dominant over the corresponding increase of κ∞ (an instantaneous part of compressibility). The trends of variation of Δκs and Δκs/κ0 with variations in solute concentration and temperature have also been discussed in terms of solute-solute and solute-solvent intermolecular/interionic interactions operative in the systems. 相似文献
20.
Masumi Takamura Tomoyuki Nakamura Kiyohito Koyama 《Polymer Degradation and Stability》2008,93(10):1909-1916
Poly(l-lactide) (PLLA) was cross-linked with various types of peroxides under constant mole ratios of peroxide-derived radicals to PLLA during reactive extrusion. Peroxides were classified into three groups according to their decomposition rates (Group I: fast, Group II: moderate and Group III: slow) and comparisons were performed within each group. Cross-linking behavior was readily understood in terms of free radical efficiency and hydrogen abstraction ability of radicals. In the case of Groups II and III, the weight-average molecular weight (Mw) of cross-linked PLLA increased with overall hydrogen abstraction ability, because slow decomposition caused uniform cross-linking in molten PLLA. In Group I, Mw and gel fraction were higher than other groups despite Group I's lower hydrogen abstraction ability, leading to the conclusion that peroxide decomposition localized in solid PLLA caused partial cross-linking because of rapid decomposition. Furthermore, the efficiency of peroxide-induced cross-linking was investigated using the Charlesby-Pinner equation. 相似文献