首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel epoxy-terminated hyperbranched polyphosphate (E-HBPP) was synthesized by employing an A2 + B3 polycondensation and characterized by FTIR, 1H NMR and GPC. E-HBPP was used as a reactive-type flame retardant for diglycidyl ether of bisphenol-A/m-phenylene diamine (DGEBA/mPDA) system. A series of flame retardant resins were prepared and their flame retardancy was monitored by the limiting oxygen index (LOI). The results showed that the LOI value of the cured samples and the degree of expansion of the formed char after burning increased along with the E-HBPP content. Their thermal degradation behaviors were investigated by thermogravimetric analysis and in situ FTIR and showed that the phosphate group of E-HBPP first degraded to form poly(phosphoric acid)s at around 300 °C, which had a major contribution to form the compact char to protect the sample from further degradation. The dynamic mechanical thermal properties were studied by dynamic mechanical thermal analysis (DMTA) and the results showed a good miscibility between E-HBPP and DGEBA. The mechanical properties of the cured films were also investigated. Less than 20% E-HBPP addition improved both the tensile strength and elongation at break.  相似文献   

2.
A flame-retardant epoxy resin (EP) was synthesized based on a novel reactive phosphorus-containing monomer, 4-[(5,5-dimethyl-2-oxide-1,3,2-dioxaphosphorinan-4-yl)oxy]-phenol (DODPP), and its structures were characterized by FTIR, 1H NMR and 31P NMR spectra. The DODPP-EP3/LWPA (low molecular weight polyamide), which contains 2.5% phosphorus, can reach UL-94 V-0 rating and a limiting oxygen index (LOI) value of 30.2%. The thermal properties and burning behaviours of cured epoxy resins were investigated by differential scanning calorimeter (DSC), thermogravimetry (TG), LOI, UL-94 tests and cone calorimetry. The morphologies of residues of cured epoxy resins were investigated by scanning electron microscopy (SEM). DSC shows that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA shows that the onset decomposition temperatures and the maximum-rate decomposition temperatures decrease, while char yields increase, with the increase of phosphorus content. The data from the cone calorimeter tests give the evidence that heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), average mass loss rate (Av-MLR) and the fire growth rate index (FIGRA) decrease significantly for DODPP-EP3/LWPA. SEM shows that the DODPP-EP3/LWPA forms lacunaris and compact charred layers which inhibit the transmission of heat during combustion.  相似文献   

3.
A novel phosphorus monomer (PDHA) has been synthesized through phenyl dichlorophosphate (PDPC) reacting with 2‐hydroxyethyl acrylate (HEA). The structure of PDHA was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). A series of UV curable resins were manufactured by blending PDHA with triglycidyl isocyanurate acrylate (TGICA) at different weight ratios. The fire performance was examined by micro‐scale combustion calorimeter (MCC) and limiting oxygen index (LOI). The results obtained from MCC indicated that the addition of PDHA to TGICA reduced the HRR and HRC. In addition, the LOI values varied from 28 to 34. The char residues of the composites were observed by scanning electron microscopy (SEM). Their thermal degradation behavior was investigated by thermogravimetric analysis and real time FTIR analysis (RT‐FTIR). The test results indicated that when the weight ratio of PDHA/TGICA = 1:1, the onset temperature of the composite was highest and the most char residue at 700°C was observed. RT‐FTIR showed that the phosphate group of PDHA first degraded to form poly(phosphoric acid)s at around 300°C, which had the major contribution to form the compact char to protect the sample from further degradation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

5.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A novel phosphorus monomer (BDEEP) has been synthesized by allowing phosphorus oxychloride to react with 2-hydroxyethyl acrylate (HEA) and 1,4-Butane diol. Its structure was characterized by Fourier transformed infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). The UV-curing behavior was investigated by FTIR. The combustibility was examined by microscale combustion colorimeter (MCC). The heat release rate (HRR) and heat release capacity (HRC) are 42.1 w/g and 44.0 J/g K, respectively. The thermal degradation was characterized using thermogravimetric analysis/infrared spectrometry (TG-IR). The curve of TGA indicates that there are three characteristic degradation temperature stages for the cured film, which was further characterized by real time Fourier transform infrared (RTFTIR) measurement. It is proposed that the flame retardant action results from decomposition of phosphate to form poly(phosphoric acid), which catalyses the breakage of bonds adjacent to carbonyl groups to form the char, preventing the sample from burning further. The volatilized products formed on thermal degradation of BDEEP indicated that the volatilized products are CO, CO2, water, alkane, carbonyl, phosphorus compounds and aromatic compounds according to the temperature of onset formation.  相似文献   

7.
A novel hyperbranched polyphosphate ester (HPPE) was synthesized via the polycondensation of bisphenol-A as an A2 monomer and phosphoryl trichloride as a B3 monomer at 100 °C, without gelation. The initial molar ratio of A2 to B3 was set to be 1.5:1. The final product was precipitated from methanol. 31P NMR spectroscopy was used to monitor the reaction. The formed HPPE was characterized by FTIR and 1H NMR to confirm its end groups. Differential scanning calorimetry data revealed that the cured bisphenol-A epoxy resin with HPPE as a curing agent possessed improved glass transition temperature. Dynamic mechanical thermal analysis also showed the increase in the glass transition temperature. The thermal degradation properties and flame retardancy were investigated by thermogravimetric analysis and limiting oxygen index (LOI). The results showed that the incorporation of HPPE into bisphenol-A epoxy resin increased its thermal stability and char yield during the decomposition by raising the second stage decomposition temperature. The LOI value increased from 23 to 31 when HPPE, instead of bisphenol-A, was used as a curing agent.  相似文献   

8.
A novel phosphate acrylate monomer (TGMAP) has been synthesized by allowing phosphoric acid to react with glycidyl methacrylate. Its structure was characterized by Fourier transformed infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG-IR). The char yield was 36.3% at 600 °C. TG data indicate that the material undergoes degradation in three characteristic temperature stages, which can be attributed to the decomposition of the phosphate, thermal pyrolysis of aliphatic chains, and degradation of an unstable structure in char, respectively. The volatilized products formed on thermal degradation of TGMAP indicated that the volatilized products are CO, CO2, carboxylic acid, acid anhydride, water, alkane, and aromatic compounds according to the temperature of onset formation.  相似文献   

9.
Poly(bisphenyl acryloxyethyl phosphate) (BPAEP) was blended in different ratios with urethane acrylate EB220 to obtain a series of UV curable flame-retardant resins. The thermal degradation mechanisms of their cured films in air were studied by thermogravimetric analysis, in situ FTIR and direct pyrolysis/mass spectrometry measurements. The results showed that BPAEP/EB220 blends have lower initial decomposition temperatures (Tdi) and higher char residues than pure EB220, while BPAEP has the lowest Tdi and the highest char residue. The degradation process of BPAEP was divided into three characteristic temperature regions, attributed to the decomposition of phosphate, ester group and alkyl chain, and aromatic structure in the film.  相似文献   

10.
This study showed that greige cotton nonwoven fabric can effectively be flame retardant by applying the phosphorus of diammonium phosphate (DAP) as low as 0.8 wt% with the addition of urea. At such a low content of phosphorus, the char length and limiting oxygen index (LOI) were continuously decreased and increased, respectively, as the concentration of urea increased. The effect of urea additive on the thermal decomposition of flame retardant greige cotton nonwoven fabric was investigated by thermogravimetry, ATR-FTIR, XRD, 1H → 13C CP/MAS NMR, and SEM. The results indicated that, upon heating, urea not only facilitated the phosphorylation reaction of DAP but also introduced carbamate groups into cellulose to decrease the degree of crystallinity prior to the decomposition of the crystalline cellulose. Compared with DAP treatment alone, the addition of urea accelerated the decomposition of glycosyl units, which resulted in a slight increase of weight loss and decrease of char yield. The char morphology observed after LOI tests indicates that urea released nonflammable gases, which blew the carboneous char layer to protect the underlying substrate.  相似文献   

11.
Pentaerythritol diphosphonate melamine-urea-formaldehyde resin salt, a novel cheap macromolecular intumescent flame retardants (IFR), was synthesized, and its structure was a caged bicyclic macromolecule containing phosphorus characterized by IR. Epoxy resins (EP) were modified with IFR to get the flame retardant EP, whose flammability and burning behavior were characterized by UL 94 and limiting oxygen index (LOI). 25 mass% of IFR were doped into EP to get 27.2 of LOI and UL 94 V-0. The thermal properties of epoxy resins containing IFR were investigated with thermogravimetry (TG) and differential thermogravimetry (DTG). Activation energy for the decomposition of samples was obtained using Kissinger equation. The resultant data show that for EP containing IFR, compared with EP, IFR decreased mass loss, thermal stability and R max, increased the char yield. The activation energy for the decomposition of EP is 230.4 kJ mol−1 while it becomes 193.8 kJ mol−1 for EP containing IFR, decreased by 36.6 kJ mol−1, which shows that IFR can catalyze decomposition and carbonization of EP.  相似文献   

12.
Phosphorus-modified siloxanes monomer DOPO-IPDI-AMEO (DIA) was synthesized and characterized by 1H nuclear magnetic resonance (H NMR), 31P NMR, and Fourier transform infrared spectra (FTIR). It hydrolyzed and grew an organic–inorganic hybrid coating on the surface of cotton fabrics via sol–gel process. The conversion of gel reaction was characterized by solid-state 29Si NMR. The effect of the modified organic–inorganic hybrid materials on thermal properties of cotton fabrics was investigated by thermogravimetric (TG) analysis, real time Fourier transform infrared (RT-FTIR), and microscale combustion calorimetry (MCC) experiments. In addition, thermogravimetry-Fourier transform infrared spectra (TG-FTIR) were used to investigate the released degradation products. The characterization information represented that DIA has been prepared successfully. Also the conversion of gel reaction was fairly high. The TG data showed that char residues increased with the addition of the DIA coating. While the peak heat release rate (PHRR) decreased with the presence of the coating in MCC test. Moreover, the flammable degradation products dropped obviously, which can be observed from the data of TG-FTIR.  相似文献   

13.
Aluminum monomethylphosphinate (MeP-Al) was synthesized and applied as a flame retardant for epoxy resin (EP). The structure of MeP-Al was characterized with FTIR, 1H NMR, 31P NMR and XRF. Curing reaction monitoring, thermal analysis, evolved gas and solid residue analysis, flammability tests (LOI, UL 94), microcombustion calorimeter and chemical analysis of residues were used. 20 mass% of MeP-Al provides EP with desired flame retardancy and anti-dripping property. The formulation passes the UL 94 V0 rating with LOI value of 29.6 %. MeP-Al mainly acts in the solid phase, and minority acts in the gas phase. P–H bond in MeP-Al can react with the unsaturated bond of compounds coming from decomposition of EP to form the condensed and stable phosphate salts in the solid phase. The firm char is a good barrier to avoid heat transfer and progressive degrading of the inner material.  相似文献   

14.
Tao  Zhenxiang  Yang  Rui  Li  Cong  Yao  Yina  Zhu  Pei  Zhang  Hui 《Journal of Thermal Analysis and Calorimetry》2018,132(3):1617-1628
A phosphorus-containing maleimide flame retardant (BDMP) was synthesized via the addition reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide and N,N′-bismaleimide-4,4′-diphenylmethane. The structure of BDMP was characterized by Fourier-transform infrared spectroscopy (FTIR), 1H and 31P nuclear magnetic resonance and elemental analysis. The thermal, flame-retardant and mechanical properties of the flame-retardant cyanate ester system were investigated by thermogravimetric analysis (TG), limiting oxygen index (LOI), vertical burning (UL-94), cone calorimeter test and dynamic mechanical analysis. The TG results indicated that the initial decomposition of modified CE resin shifted from 416 to 363 °C, and on the contrary, the char yield increased from 38.8 to 44.5%. The results of combustion tests indicated that the CE with highest phosphorus content acquired LOI value of 37% and achieved a UL-94 V-0 rating. The peak heat release rate, average heat release rate and average of effective heat combustion (av-EHC) of that group decreased by 39.5, 31.2 and 41.8%, respectively. In addition, the increase in phosphorus content led to a decrease in av-EHC and average CO2 yield, and an increase in average CO yield, indicating that BDMP led to an incomplete combustion of the modified CE system. The flame-retardant mechanism was investigated by TG–FTIR, scanning electron microscope and cone calorimeter. Last but not least, the dielectric constant of modified CE system showed a slight fluctuation from 2.96 to 3.02 at 1 GHz, which was lower than that of neat CE.  相似文献   

15.
A novel type of hyperbranched (3-hydroxyphenyl) phosphate (HHPP) with high functionality as a curing agent of epoxy resins was synthesized and characterized by FTIR, 1H NMR and vapor phase osmometry (VPO). The cured epoxy resin with HHPP possessed improved glass transition temperature. The thermostability and flame retardancy of O-cresol novolac epoxy resin cured with different contents of HHPP were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI) and cone calorimetry. The obtained results show that the samples containing a higher percentage of HHPP exhibit relatively lower thermostability at lower temperature while higher thermostability at elevated temperature and more char was formed compared with those containing a lower percentage of HHPP. The LOI value increased from 22.0 to 30.0 when HHPP, instead of 1,3-dihydroxybenzene, was used as a curing agent. The 25 wt% addition of HHPP in the curing agent complex effectively decreased the heat release rate and improved the char yield to the content nearly similar as those of the epoxy resin cured with pure HHPP.  相似文献   

16.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane (KH-602) and diphenylsilanediol through solution polycondesation and it was used together with potassium-4-(phenylsulfonyl)benzenesulfonate (KSS) to prepare a flame-retardant system for polycarbonate (PC). The structure and thermal property of PSiN were characterized by Fourier transform infrared spectroscopy (FTIR), 1HNMR and thermogravimetric analysis (TG) tests. Flammability and thermal behaviors of PC/KSS/PSiN systems were estimated by limited oxygen index (LOI), cone calorimeter, vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and char residues of PC/KSS system were improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% KSS were incorporated, the LOI value of PC was found to be 46, and class V-0 of the UL-94 test. Moreover, both the heat release rate and the total heat release of PC/KSS/1 mass% PSiN decreased compared with those of PC and PC/KSS systems. The microstructures observed by scanning electron microscopy and FTIR indicated that the surface of the char for PC/KSS/PSiN system hold a more cohesive and denser char structure when compared with the pure PC and PC/KSS system.  相似文献   

17.
A series of FR-RPUF composites were prepared by a one-step water foaming process with ammonium polyphosphate (APP) and steel slag (SS) as flame retardants. Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical combustion test, microscale combustion calorimetry (MCC), TG-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy (SEM), Raman spectra and FTIR were used to investigate the thermal stability, flame retardancy, combustion performance, gas phase products, and char residue morphology of FR-RPUF composites. TG test results showed that the initial decomposition temperature (T-5wt%) and char residue rate at 700°C of RPUF/APP/SS composites were significantly enhanced by the addition of APP and SS, and the thermal stability of the composites was improved. Flame retardant test results confirmed the significantly increased LOI values of RPUF/APP/SS composites with V-0 rating. TG-FTIR also confirmed the obviously decreased release of toxic gases and flammable gases in the combustion of RPUF/APP/SS composites. SEM and Raman spectra of char residues for the composites suggested that APP/SS system improved the compactness and graphitization degree of char layer for RPUF/APP/SS composite. The above researches provide a new strategy for the utilization of SS in fire safety engineering.  相似文献   

18.
Ferric pyrophosphate (FePP) was used as additive to study its synergistic effect of thermal degradation on cotton fabrics. The microscale combustion calorimetry (MCC), thermogravimetric analysis (TG), Raman spectroscopy and Real Time Fourier transform infrared spectroscopy (RT-FTIR) were utilized to evaluate the synergistic effects of FePP on cotton/DIA. The MCC results revealed that cotton/DIA/FePP generated less combustion heat during heating than that of cotton/DIA. TG results showed that presence of FePP improved the thermal stability of materials. The Raman spectroscopy test showed that FePP can ameliorate the structural organization level of the carbon and the graphitization degree of the char. RT-FTIR data revealed the mechanism of the influence of FePP, which can catalyze the break of the flame retardant as well as promote the char forming.  相似文献   

19.
A novel silicon-containing trifunctional cycloaliphatic epoxide resin tri(3,4-epoxycyclohexylmethyloxy) phenyl silane (TEMPS) was synthesized and characterized by FTIR, 1H NMR, 13C NMR, and 29Si NMR spectroscopic analysis. A series of flame-retardant formulations by blending TEMPS with a commercial epoxide resin DGEBA (EP828) in different ratios were prepared, and exposed to a medium pressure lamp to form the cured films in the presence of diaryliodonium hexafluorophosphate salt as a cationic photoinitiator. The thermal degradation behaviors of the cured films were evaluated by thermogravimetric analysis. The char yields under nitrogen and air atmospheres increased along with the TEMPS content. The limiting oxygen index (LOI) value increased from 22 for EP828 to 30 for TEMPS80, demonstrating the improved flame retardancy. The data from the dynamic mechanical thermal analysis showed that TEMPS had good miscibility with EP828. The T s and T g both decreased from 93 and 138 to 78 and 118 °C, respectively. The crosslinking density (ν e) increased along with the TEMPS content. The mechanical property measurements indicated that the addition of TEMPS led to a decrease in the tensile strength and an increase in the elongation-at-break.  相似文献   

20.
A series of UV‐curable intumescent flame retardant resins was obtained by blending phosphate triacrylate (TAEP) in certain ratios with star poly(urethane acrylate) (SPUA) oligomer. The flammability of the cured films was characterized by limited oxygen index (LOI), UL 94, and the cone calorimeter. The results showed that the cured TAEP/SPUA samples greatly expanded while burning. A distinct synergistic effect was found between TAEP and SPUA. TAEP2 sample showed the highest LOI value (41) among all resins. The cone calorimeter results showed that the peak heat release rates and carbon monoxide yield decreased to the approximate level. The degradation was monitored by thermogravimetric analysis and real‐time Fourier transform infrared spectroscopy. A degradation mechanism is suggested in which the phosphate group in TAEP first degraded to form poly(phosphoric acid)s, which further catalyzed the degradation of the material to form char with emission of carbon dioxide and nitrogen volatiles from SPUA, leading to the formation of expanding char. The morphologic structures of crusts of the formed chars were observed by scanning electron microscopy, demonstrating the synergistic effect between TAEP and SPUA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号