首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The important polymer stabilizer, 1,2-bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, which serves a dual role as a metal deactivator and antioxidant, is shown to have crystal polymorphism. Although the published melting range is 225-232 °C, which is well above the processing temperature of many polymers in which it is used, existence of a second polymorph that transforms below 205 °C is demonstrated. This α polymorph, which is thermodynamically stable at room temperature, is thermodynamically un-favored at temperatures above about 176 °C. It is shown that under some conditions the α polymorph can endothermically pass directly into the melt state at temperatures below 205 °C, while under other conditions it undergoes a direct endothermic solid-solid transition to the higher melting β polymorph.The results highlight the potential importance of polymorphs for controlling polymer additive behavior and elucidate important phenomena relevant to dispersion of this additive in polymer compounds.  相似文献   

2.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers.  相似文献   

3.
A new series of low melting and hydrophobic ionic liquids (ILs) containing the bis[bis(pentafluoroethyl)phosphinyl]imide anion, [(C2F5)2P(O)]2N (FPI), and ammonium, phosphonium, imidazolium, pyridinium or pyrrolidinium cations were prepared and characterized. Their density, viscosity, melting point, glass transition temperature, decomposition temperature and conductivity are discussed. Many of these ionic liquids are liquids at room temperature with melting points below 15 °C, viscosities below 110 mm2 s−1 and thermal stabilities above 300 °C.  相似文献   

4.
The morphological development of melt-drawn transparent high-density polyethylene during heating was investigated employing in-situ synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that at lower temperatures only meridional scattering peaks aligned perpendicular to the extensional flow direction can be observed, indicating a highly oriented lamellar crystallite structure; whereas at higher temperatures an equatorial streak additional to the layer-like meridional scattering pattern develops, reflecting the presence of shish-kebab-like objects in the specimen under investigation. Upon heating, the average thickness of the kebab crystals remains essentially unaffected below 110 °C, and subsequently the selective melting of the less stable kebabs proceeds yielding thicker layered lamellar crystals. When the temperature is raised to 131 °C, the shish-like formation and the thermally stable kebab crystals melt simultaneously. In addition, the microstructure of the melt-drawn specimen subjected to annealing at elevated temperatures was probed at room temperature. As opposed to the SAXS patterns registered at high temperatures, the SAXS diagram measured after annealing shows no equatorial streak, suggesting that the cylindrical structures could be re-formed. This observation can be explained by assuming that the plate-like kebab crystals with their normal parallel to the stretching direction grow and impinge during cooling to room temperature due to secondary crystallization, which can be verified by in-situ SAXS experiments during annealing and subsequent cooling.  相似文献   

5.
Thermal degradation behavior of poly(4-hydroxybutyric acid) (P(4HB)) was investigated by thermogravimetric and pyrolysis-gas chromatography mass spectrometric analyses under both isothermal and non-isothermal conditions. Based on the thermogravimetric analysis, it was found that two distinct processes occurred at temperatures below and above 350 °C during the non-isothermal degradation of P(4HB) samples depending on both the molecular weight and the heating rate. From 1H NMR analysis of the residual P(4HB) molecules after isothermal degradations at different temperatures, it was confirmed that the ω-hydroxyl chain-end was remained unchanged in the residual P(4HB) molecules at temperatures below 300 °C, while the ω-chain-end of P(4HB) molecules was converted to 3-butenoyl units at temperatures above 300 °C. In contrast, the majority of the volatile products evolved during thermal degradation of P(4HB) was γ-butyrolactone regardless of the degradation temperature. From these results, it is concluded that during the thermal degradation of P(4HB), the selective formation of γ-butyrolactone via unzipping reaction from the ω-hydroxyl chain-end predominantly occurs at temperatures below 300 °C. At temperatures above 300 °C, both the cis-elimination reaction of 4HB unit and the formation of cyclic macromolecules of P(4HB) via intramolecular transesterification take place in addition to unzipping reaction from the ω-hydroxyl chain-end. Finally, the primary reaction of thermal degradation of P(4HB) at temperatures above 350 °C progresses by the cyclic rupture via intramolecular transesterification of P(4HB) molecules with a release of γ-butyrolactone as volatile product. Moreover, we carried out the thermal degradation tests for copolymer of 93 mol% of 4HB with 7 mol% of 3-hydroxybutyric acid (3HB) to examine the effect of 3HB units on thermal stability of P(4HB).  相似文献   

6.
Poly(vinylidene fluoride) (PVDF) exhibits pronounced polymorphs.Its γ phase is attractive due to the electroactive properties.The γ-PVDF is however difficult to obtain under normal crystallization condition.In a previous work,we reported a simple melt-recrystallization approach for producing y-phase rich PVDF thin films through selective melting and subsequent recrystallization.We reported here another approach for promoting the αγ'phase transition to prepare γ-phase rich PVDF thin films.To this end,a stepwise crystallization and subsequent annealing process was used.The idea is based on a quick generation of a large amount of α-PVDF crystals with some of their γ-PVDF counterparts at suitable crystallization temperature and then annealing at a temperature above the crystallization temperature for enhancing the molecular chain mobility to overcome the energy barrier of phase transition.It was found that crystallizing the PVDF melt first at 152 ℃ for4 h,then quenching to room temperature and finally annealing the sample at 160 ℃ for 100 h was the most efficient to produce γ-PVDF rich films.This is related to the melting and recrystallization of the α-PVDF crystals produced during quenching in the annealing process at 160 ℃,which favors the formation of γ-PVDF crystals for triggering the αγ'phase transition.  相似文献   

7.
Our object was to investigate the effect of annealing on the glass transition temperatures and enthalpic recovery of frozen aqueous solutions of trehalose. Trehalose solutions were subjected to differential scanning calorimetry wherein they were first cooled from room temperature to −60 °C, and heated to the annealing temperature, which ranged between −34 and −48 °C. Following isothermal annealing for the desired time period, the glass transition temperatures and the enthalpic recovery were determined in the final heating scan. Frozen unannealed trehalose solutions were characterized by two glass transition events. At a heating rate of 2 °C/min, the observed Tg1′ and Tg2′ were ∼−45 and −31 °C, respectively. Annealing resulted in an increase in the lower transition temperature, Tg1′, while the higher transition temperature, Tg2′, was unaffected. Enthalpic recovery due to annealing was associated only with Tg2′. Annealing at −36 °C resulted in the highest value of Tg1′ and the maximum enthalpic recovery. Irrespective of the heating rates, the magnitude of enthalpic recovery and Tg1′ showed a similar trend (first an increase, followed by a decrease) as a function of annealing temperature. This suggests that annealing led to crystallization of ice and subsequently the system became maximally freeze-concentrated. Annealing, at temperatures higher than −36 °C, led to a reduction in enthalpic recovery associated with Tg2′ and a lowering of Tg1′. These observations are consistent with the hypothesis that the higher transition temperature coincides with the onset of ice melting. We have attempted to bridge two conflicting schools of thought regarding the origin of multiple glass transitions in frozen aqueous sugar solutions. The two glass transitions are attributed to the formation of two “populations” in the freeze-concentrated phase during “non-equilibrium” or rapid cooling—one, that is maximally freeze-concentrated and the other that contains a higher amount of water. The higher transition temperature also overlaps with the onset of ice melting.  相似文献   

8.
The recrystallization behavior of high-density polyethylene (HDPE) on the highly oriented isotactic polypropylene (iPP) substrates at temperatures below the melting temperature of HDPE has been investigated by means of transmission electron microscopy. The results obtained by the bright-field observation and the electron diffraction show that upon annealing the HDPE-quenched films on the oriented iPP substrates at temperatures below 125°C, only a small amount of HDPE recrystallizes on the iPP substrate with [001]HDPE//[001]iPP, while annealing the HDPE-quenched films at temperatures above 125°C, all of the HDPE crystallites recrystallize epitaxially on the iPP substrate with [001]HDPE//[101]iPP. © 1997 John Wiley & Sons, Inc. J Polym Sci B: 35 : 1415–1421, 1997  相似文献   

9.
Structural changes occurring during crystallization of quenched amorphous poly(ethylene terephthalate) (PET) and subsequent cooling/heating cycles have been studied by real-time small-angle x-ray scattering (SAXS), using synchrotron radiation. Initial crystallization is found to occur by insertion of new lamellae between the existing ones, while rapid continuous melting/recrystallization happens when the cold-crystallized PET samples are heated above the previous highest annealing temperature. Such melting/recrystalization results in irreversible increases in the lamellar long period, the crystal thickness and the density difference between the crystalline and amorphous regions; in contrast, at temperatures below the prior highest crystallization temperature, the structural changes are dominated by reversible effects such as thermal expansion. However, throughout the entire temperature range up to the melting point around 250 °C, the crystal core thickness remains quite small, less than ca. 50 Å, and the linear crystallinity of lamellar stacks remains nearly constant around 0.3. Such a low crystallinity indicates the presence of thick order-disorder interfacial layers on the lamellar surface, whose thickness increases with temperature.Dedicated to Prof. E. W. Fischer on the occasion of his 65th birthday.  相似文献   

10.
Oriented poly(vinylidene fluoride) (PVDF) films with β‐form crystals have been commonly prepared by cold drawing of a melt‐quenched film consisting of α‐form crystals. In this study, we have successfully produced highly oriented PVDF thin films (20 µm thick) with β‐crystals and a high crystallinity (55–76%), by solid‐state coextrusion of a gel film to eight times the original length at an established optimum extrusion temperature of 160°C, some 10°C below the melting temperature. The resultant drawn films had a highly oriented (orientation function fc = 0.993) fibrous structure, showing high mechanical properties of an extensional elastic modulus of 8.3 GPa and tensile strength of 0.84 GPa, along the draw direction. Such highly oriented and crystalline films exhibited excellent ferroelectric and piezoelectric properties. The square hysteresis loop was significantly sharper than that of a conventional sample. The sharp switching transient yielded the remnant polarization Pr of 90 mC/m2, and the electromechanical coupling factor kt was 0.24 at room temperature. These values are about 1.5 times greater than those of a conventional β‐PVDF film. Thus, solid‐state coextrusion near the melting point was found to be a useful technique for the preparation of highly oriented and highly crystalline β‐PVDF films with superior mechanical and electrical properties. The morphology of the extrudate relevant to such properties is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2549–2556, 1999  相似文献   

11.
Fluorinated graphites (CF0.47) were obtained by reaction at room temperature of fluorine gas with graphite in the presence of boron trifluoride and hydrogen fluoride as catalysts. Their thermal treatments under fluorine at temperatures up to 600 °C lead to a progressive increase of the fluorine level resulting in an highly fluorinated graphite (CF1.02). Whatever the fluorination level, a stage one fluorine-graphite intercalation compound is obtained. The sp2 carbon hybridization is maintained for treatment temperature below 300 °C and two types of structure coexist for TT in the range 350-550 °C. Finally, above 550 °C, carbon hybridization is sp3.The resulting materials were studied by 11B, 1H, and 19F NMR and EPR at different experimental temperatures giving informations about the intercalated fluoride species, the temperature of their removal from the host fluorocarbon matrix, as well as their mobility.  相似文献   

12.
The influence of melting temperature and time on the thermal behaviour of poly(l-lactic acid) (PLLA) was studied with differential scanning calorimetry (DSC). Different melting conditions were investigated at temperature ranging from 200 to 210 °C, and for time from 2 to 20 min. For lower-molecular-weight PLLA, a single exothermic peak could be observed at cooling rate of 2 °C/min, after melted at different conditions. The obtained peak temperature and degrees of crystallinity dramatically increased with an increase of melting temperature or time. During subsequent heating scans, double melting peaks could be observed, which were significantly affected by prior melting conditions. The degradation of this material in the melt and the melt/re-crystallization mechanism might be responsible for the observations above. Apart from double melting, double cold crystallization peaks were observed during heating traces for this material after fast cooling (20 °C/min) from the melt. Prior melting conditions could significantly influence the cold crystallization behaviour. The competition between the crystallization from the nuclei remained after cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks. Additionally, the influence of melting conditions on the thermal behaviour of PLLA was dependent on the initial molecular weight.  相似文献   

13.
The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original crystallization temperature of the crystals, far below their melting temperature. Evenly distributed cavities penetrated the crystals, and the number of cavities increased with a rising annealing temperature until the adjacent cavities coalesced. The thickness of the crystals increased during annealing at temperatures slightly above the crystallization temperature. Annealing experiments at fixed temperatures showed that the reorganization process (cavity formation and single‐crystal thickening) was fast. Depending on the annealing temperature, the final morphology was formed in seconds. This behavior suggests high chain mobility as well as a homogeneous solid‐state reorganization of the entire single crystal at low annealing temperatures. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 763–770, 2001  相似文献   

14.
Microporous PVDF membranes were prepared by immersion‐precipitation in 1‐octanol of casting dopes dissolved at different temperatures, with dissolution temperature affecting strongly the membrane microstructure. The effect of postcoagulation thermal annealing, which is an additional thermal parameter, on membrane microstructure and properties is probed herein. Membranes obtained were annealed at temperatures up to 160 °C, which is close to the melting point of PVDF polymer. Annealing leads to a substantial modification of the nano‐scale fine structure of the membranes, while the overall‐microporous structure is preserved. At elevated annealing temperatures, nano‐grains, fibrils, and stick‐like crystalline entities gradually eclipse, while globules develop more robust connections based on wide bands of crystal elements. Probing by X‐ray diffraction and dynamic scanning calorimetry shows that crystallinity increases when annealing temperature and time are increased. As regards mechanical properties, the tensile strength of the membranes can be enhanced substantially, up to about 10 times, upon appropriate high temperature prolonged annealing. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1880–1893, 2009  相似文献   

15.
DSC investigations of various keratins, modified keratins, and keratin model substances have shown that the first of the two endothermic peaks in the temperature range 230 °–255 °C is a microfibrillar helix peak and that the area under the peak represents a measure of the relative helix content of the sample. The peak area of every untreated keratin sample is equal to 100 % and decreases continuously with increasing extension or thermal degradation of the fiber. The relative helix content of annealed keratins depends upon the annealing time and the annealing temperature. Short annealing times at high temperatures, principally, have the same effect as long annealing times, at lower temperatures with one decisive difference: In the first case, the helix peak maximum is shifted to lower temperatures and, in the second case, to higher temperatures. It seems that these shifts, combined with amino acid analyses, are essential to the further understanding of the complicated thermal decomposition of keratins.  相似文献   

16.
It is well known that the ferroelectric performance of poly (vinylidene fluoride) (PVDF) is caused by its β-crystal structure, which can be efficiently induced through a stretching process applied to the PVDF. Though numerous PVDF nanocomposites have been reported on, there is still a lack of studies on how the stretching process affects the phase transformation in PVDF nanocomposites. In this study, the effects of stretching on the crystalline structures and alternating current (AC) conductivity of PVDF nanocomposites with different concentrations (up to 5.0 wt.%) of CNFs were investigated. Results revealed that the stretching process is not only an effective approach to produce β-crystal from pure PVDF, but also for CNF/PVDF composites. The extremely high phase transformation from α- to β-crystal (?96%) is maintained for the nanocomposites with above 1.0 wt.% CNFs. The AC conductivity of CNF/PVDF composites remarkably decreases when the resultant percolation threshold is raised from 1.0 to 4.2 wt.% CNFs after stretching. This is attributed to the reduced crystallinity induced by the phase transformation from α- to β-PVDF as well as the CNF re-orientation.  相似文献   

17.
Supramolecular structure and morphology of as-polymerized, sintered, and gamma-irradiated suspension PTFE were studied with scanning electron microscopy. Irradiation was performed both below and above melting point of crystal phase. Fibrillar supramolecular structure of as-polymerized PTFE is preserved after its sintering. In contrast to as-polymerized PTFE, in the sintered polymer some segments of fibrils form lamellae of thickness 100-300 nm and length up to several microns, with fibrils arranged perpendicularly to a lamella. Irradiation below the melting point (20 and 200 °C) does not change quantitatively PTFE morphology. In both cases and also in the case of pristine PTFE, dense and loose (porous) regions are present in its morphology. Dense regions are packages of irregular shape and consist of densely packaged fibrils. Loose regions consist of individual ribbons and fibrillar lamellae. Irradiation at 200 °C increases greatly the width of lamellae. PTFE structure rearrranges drastically under irradiation above the melting point. New morphology units, spherulites of size about 50 μm, are formed, the spherulites consisting of radially extending fibrils, and porosity decreases substantially. Formation of spherulites is ascribed to radiation-induced chain scission and decrease in molecular mass and viscosity of polymer.  相似文献   

18.
The thermal shrinkage of stretched crosslinked high-density polyethylene (HDPE) was investigated with the aim to produce heat shrinkable materials. The heat shrinkable property was achieved by a process of heating-stretching-cooling by aid of tensile machine on crosslinked HDPE obtained by compounding with various amount of peroxide. Effect of stretching ratio and stretching temperature on thermal and shrinkage behaviour at varying peroxide contents was investigated. The results showed that crosslinking hindered the crystallization process by decreasing the melting and crystallization temperatures as well as the total degree of crystallinity. The stretching ratio had no significant effect on shrink temperature but rather on ultimate shrinkage. The stretching temperature had relatively significant influence on the shrink temperature. Crosslinked HDPE stretched at above melting point (140 °C) had higher shrink temperature as compared to those stretched at lower temperature (90 °C). These effects could be reasonably explained by Hoffman theory and changes in crystallites size and total amount of crystallinity.  相似文献   

19.
We have fabricated ITO-ZnO composition spread films to investigate the effects of substrate temperature on their electrical and optical properties by using combinatorial RF magnetron sputtering. It turned out by X-ray measurement that the film with zinc contents above 16.0 at% [Zn/(In+Zn+Sn)] showed amorphous phase regardless of substrate temperature. The amorphous ITO-ZnO film had lower resistivity than polycrystalline films. When the films were deposited at 250 °C, the minimum resistivity of 3.0×10−4 Ω cm was obtained with the zinc contents of 16.0 at%. The indium content could be reduced as high as ~30 at% compared to that of ITO for the films having similar resistivity (~10−4 Ω cm). However, a drastic increase of resistivity was observed for the ITO-ZnO films deposited at 350 °C, having zinc contents below 15.2 at%.  相似文献   

20.
This report describes isothermal aging of piezoelectricity in poly(vinylidene fluoride) (PVDF) based on long-term heat treatments between 40 and 160°C. The results demonstrate that no piezoelectric decay occurs below about 60°C, that between 60 and 160°C the aging behavior follows logarithmic kinetics, and that aging is linearly dependent on temperature. Both uniaxial and biaxial PVDF show similar trends, but piezoelectric decay is more rapid for uniaxial film. Decay of permanent poling-induced polarization is identified as the likeliest cause of piezoelectric aging, and piezoelectric decay is found to be associated with long-range annealing effects which also produce macroscopic shrinkage of the PVDF film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号