共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of flame retarded epoxy resins (EP) was prepared with a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS). The flame retardancy of these EPs was tested by the LOI, UL-94, which indicates that DOPO-POSS has meaningful effects on the flame retardancy of EP composites. 2.5 wt.% DOPO-POSS incorporation into epoxy resin (EP-2.5), results in a LOI value 30.2 and UL-94 V-1 (t1 = 8 s and t2 = 3 s) rating. Moreover, self-extinguishing effect through the pyrolytic gases spurt is observed in UL-94 test for the EP-2.5. The pyrolytic gases and thermal stability of epoxy resins with and without DOPO-POSS were detected by TGA-FTIR under air atmosphere. Releases of gaseous species are found to be similar for the pure EP and EP-2.5. The details of fire behaviour, such as TTI, HRR, p-HRR, TSR, SEA, COPR, CO2PR, and TML, were tested by cone calorimeter. It is notable that 2.5 wt.% DOPO-POSS could make COPR and CO2PR reach a maximum, which could explain the blowing-out extinguishing effect. 相似文献
2.
3.
Kinetics study of thermal decomposition of epoxy resins containing flame retardant components 总被引:1,自引:0,他引:1
Qingfeng Wang 《Polymer Degradation and Stability》2006,91(8):1747-1754
Hyperbranched polyphosphate ester (HPPE) and phenolic melamine (PM) were blended in different ratios with a commercial epoxy resin to obtain a series of flame retardant resins. The thermal decomposition mechanism of their cured products in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The degradation behaviours of epoxy resins containing various flame retardant components were found to be greatly changed. The incorporation of phosphorus and nitrogen compounds improved the thermal stability at elevated temperature. The kinetics of thermal decomposition was evaluated by Kissinger method, Flynn-Wall-Ozawa method and Horowitz-Metzger method. The results showed that the activation energy at lower degree of the degradation decreased by the incorporation of flame retardant components, while increased at higher degree of the degradation. 相似文献
4.
Synthesis of three novel phosphorus-containing flame retardants and their application in epoxy resins 总被引:1,自引:0,他引:1
Dechao SunYouwei Yao 《Polymer Degradation and Stability》2011,96(10):1720-1724
One symmetric diamine (4) and two symmetric phenols (5) and (6) were synthesized as phosphorus-containing flame retardants. The synthesis comprised a two-step procedure: the condensation of p-phenylenediamine with benzaldehyde, 4-hydroxybenzaldehyde and 2-hydroxybenzaldehyde respectively, followed by the addition of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide to the imine linkage. The structures of (4)-(6) were characterized by FTIR, NMR and mass spectra. (4)-(6) served as co-curing agents of diaminodiphenylmethane for epoxy resins, and epoxy thermosets exhibited excellent flame retardancy, moderate changes in glass transition temperature (Tg) and thermal stability. When the phosphorus content reached 1.0 wt.%, the epoxy resin system met the UL-94 V-0 classification and the limiting oxygen index (LOI) reached more than 35.6, probably because of the nitrogen-phosphorus synergistic effect. 相似文献
5.
Preparation, thermal properties and flame retardancy of phosphorus- and silicon-containing epoxy resins 总被引:3,自引:0,他引:3
Phosphorus- and silicon-containing epoxy resins were prepared from (2,5-dihydroxyphenyl)diphenyl phosphine oxide (Gly-HPO), diglycidyloxy methylphenyl silane (DGMPS) and 1,4-bis(glycidyloxydimethyl silyl)-benzene (BGDMSB) as epoxy monomers and diaminodiphenylmethane (DDM), bis(3-aminophenyl)methyl phosphine oxide (BAMPO) and bis(4-aminophenoxy)dimethyl silane (APDS) as curing agents. Epoxy resins with different phosphorus and silicon content were obtained. Their thermal, dynamic mechanical and flame retardant properties were evaluated. The high LOI values confirmed that epoxy resins containing hetero-atoms are effective flame retardants, but a synergistic efficiency of phosphorus and silicon on flame retardation was not observed. 相似文献
6.
Xin Wang Yuan Hu Lei SongWeiyi Xing Hongdian Lu 《Journal of Analytical and Applied Pyrolysis》2011,92(1):164-170
A novel phosphorus-containing oligomeric flame retardant, poly(DOPO substituted hydroxyphenyl methanol pentaerythritol diphosphonate) (PDPDP) was synthesized and applied to flame retarded epoxy resins. The thermal degradation behaviors of flame retarded epoxy composites with PDPDP were investigated by thermogravimetric analysis (TGA), thermogravimetric analysis/infrared spectrometry (TG-FTIR) and direct pyrolysis-mass spectrometry (DP-MS) techniques. The identification of pyrolysis fragment ions provided insight into the flame retardant mechanism. The results showed that the mass loss rate of the EP/PDPDP composites was clearly lower than pure EP when the temperature was higher than 300 °C in air or nitrogen atmosphere. The results also suggested that the main decomposition fragment ions of the EP/PDPDP composite were H2O, CO2, CO, benzene, and phenol. The incorporation of PDPDP can reduce the release of combustible gas and induce the formation of char layer, hence the fire potential hazard was reduced. 相似文献
7.
Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate 总被引:4,自引:0,他引:4
Jun-Sheng Wang Hai-Bo Zhao De-Yi Wang Yu-Zhong Wang 《Polymer Degradation and Stability》2009,94(4):625-631
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect. 相似文献
8.
The development of high-performance biomass-derived epoxy thermosets with excellent flame resistance is vital to various applications (i.e., composites, coatings and adhesives). Herein, a difunctional epoxy monomer bis(2-methoxy-4-(oxiran-2-ylmethyl)phenyl) phenyl phosphate (BEU-EP) was synthesized from abundant and biobased eugenol. In addition, BEU-EP was cured by 4,4′-diaminodiphenyl methane (DDM) and the cured resin diglycidyl ether of bisphenol A (DGEBA)/DDM was used as a reference. Results indicated that BEU-EP/DDM not only showed a 58.1%, 28.8% and 35.1% increase in residual char (at 700 °C), flexural and storage modulus (at 30 °C) compared with DGEBA/DDM, but also exhibited excellent flame resistance and smoke suppression. BEU-EP/DDM passed V-0 rating (in UL-94 testing) with limiting oxygen index (LOI) of 38.4% and greatly decreased the peak heat release rate (pHRR) and total smoke production (TSP) by 84.9% and 80.5%, respectively. The mechanism analysis confirmed that the phosphorus-containing group and aromatic structure from BEU-EP contributed both the gas and condensed-phase flame retardation of BEU-EP/DDM network. This work provides an efficient and scalable route for synthesizing biobased epoxy thermosets with high integrated performance and superior flame resistance. 相似文献
9.
A. De Fenzo C. Formicola V. Antonucci M. Zarrelli M. Giordano 《Polymer Degradation and Stability》2009,94(9):1354-1363
Flame behaviour is a fundamental requirement for advanced aerospace composites. In this work, a commercial, low-viscosity epoxy system, typically used in liquid infusion composite processes, and its mixtures with three different zinc-based flame retardants (ZB, ZS, ZHS) at different weight percentages has been investigated by cone calorimetry and thermogravimetric analysis.Cone calorimetry has been performed to verify the flame retardancy effects induced by each filler composition. Nevertheless manufacturability issues require the evaluation of the rheological changes induced by filler on the unloaded matrix system. Rheological tests have been, therefore, performed to identify the maximum concentration of filler. Based on these results thermogravimetric tests have been performed to investigate thermal degradation kinetics of selected systems. The feasibility of Kissinger and Flynn-Wall-Ozawa method for the determination of characteristic degradation kinetics parameters has been evaluated and results were analysed. A simplified decomposition model was assumed to analyse epoxy degradation behaviour; it was found that this model gives appreciable matching with experimental TGA curve trend for neat epoxy whereas for the filled compounds additional stages were assume to occur. 相似文献
10.
Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins 总被引:1,自引:0,他引:1
Qingfeng Wang 《European Polymer Journal》2006,42(10):2261-2269
Di(acryloyloxyethyl) benzenephosphonate (DABP) and acryloyloxyethyl phenyl benzenephosphonate (APBP) were synthesized starting from phenylphosphonic dichloride, and characterized by FT-IR and 1H NMR. DABP and APBP were blended in the ratios of 10-50 wt.% with a commercial epoxy acrylate oligomer (EB600) to obtain a series of flame retardant UV-curable formulations. The viscosity of the formulations greatly reduced by the addition of the reactive monomers, whereas the photopolymerization rate according to the photo-DSC analysis increased. The thermal degradation behavior and flame retardancy of the UV-cured films were investigated by thermogravimetric analysis and the limiting oxygen index (LOI). The results revealed that the blended epoxy acrylates with DABP or APBP possess improved thermal stability at elevated temperature and have higher char yields, together with higher LOI values. The data from dynamic mechanical thermal analysis showed that DABP and APBP have good miscibility with EB600. The crosslink density increased along with the content of DABP or APBP in the blend, whereas the glass-transition temperatures of the blended resins decreased compared to pure cured EB600. 相似文献
11.
Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation 总被引:1,自引:0,他引:1
B. Perret B. Schartel K. Stöß M. Ciesielski J. Diederichs M. Döring J. Krämer V. Altstädt 《European Polymer Journal》2011,(5):1081-1089
Two novel, halogen-free, phosphorus-based oligomeric flame retardants are investigated in the commercial epoxy resin RTM6 and ∼70 wt.% carbon fibre RTM6 composites (RTM6-CF) with respect to pyrolysis and fire behaviour. The flame retardants are based on 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide (DOPO) units linked to the star-shaped aliphatic ground body tetra-[(acryloyloxy)ethyl] pentarythrit (DOPP), or heterocyclic tris-[(acryloyloxy)ethyl] isocyanurate (DOPI), respectively. The glass transition temperature is reduced by adding DOPP and DOPI, but the mechanical properties of the composites (e.g. interlaminar shear strength (ILSS) and Gc in mode I and II) remain unchanged. Decomposition models are proposed based on mass loss, evolved gas analysis (TG–FTIR) and condensed product analysis (hot stage cell within FTIR). The fire behaviour is investigated comprehensively (UL 94, limiting oxygen index (LOI) and cone calorimeter). Both flame retardants act in the gas phase through flame inhibition and in the condensed phase through charring. The UL 94 of RTM6 is improved from HB to V-1 and V-0; the LOI from 25% to 34–38%. Peak heat release rate (PHRR) and total heat evolved (THE) are lowered by 31-49% and 40–44%, respectively. Adding CF increases the residue, reduces the THE, but suppresses the charring due to RTM6 and flame retardants. Thus the THE of RTM6-CF is reduced by about 25% when DOPI and DOPP are added. However, UL 94: V-0 and LOI of 45% and 48% are achieved with ∼0.6 wt.% phosphorus. 相似文献
12.
Mustapha El Gouri Abderrahim El Bachiri Salah Eddine Hegazi Mohamed Rafik Ahmed El Harfi 《Polymer Degradation and Stability》2009,94(11):2101-2106
Hexaglycidyl cyclotriphosphazene (HGCP) was synthesized, and characterized by FTIR, 31P, 1H, and 13C-NMR. This compound was used as a reactive flame retardant to blend with commercial epoxy resin DGEBA (Diglycidyl ether of bisphenol A). Its effect on the DGEBA decomposition pathways was characterized by studying both gas and solid phases produced during thermogravimetric analysis (TGA). The gases evolved during TGA in air were studied by means of thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR), while the solid residues were analysed by FTIR and scanning electron microscopy (SEM). The results showed that HGCP presents a good dispersion in DGEBA, and the blend thermoset with 4,4′-methylene-dianiline (MDA) curing agent leads to a significant improvement of the thermal stability at elevated temperature with higher char yields compared with pure DGEBA thermoset with the same curing agent. Improvement has also been observed in the fire behaviour of blend sample. 相似文献
13.
Flame retarded polymer formulations are mainly used in long-term applications whereas antioxidants, light stabilizers and co-additives provide the requested lifetime of plastic materials. However many flame retardants influence the oxidative and photooxidative stability of polymers often in a negative way resulting in early failure and loss in value. Moreover insufficient (photo)oxidative stability of the flame retardant itself may reduce the flame retardance performance over time. Therefore, there is a need to develop adjusted stabilizer systems considering the type of flame retardant, the polymer substrate and the intended application. Therefore, the influence of flame retardants on the (photo)oxidative stability of selected polymers is reviewed and strategies to extend the lifetime of flame retarded polymers are provided. In addition, the specific requirements of the stabilization of nanocomposites as potential flame retardant components are covered. 相似文献
14.
Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin 总被引:1,自引:0,他引:1
Ran Liu 《Polymer Degradation and Stability》2009,94(4):617-624
Hexakis(4-hydroxyphenoxy)-cyclotriphosphazene (PN-OH) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene and reduction of the aldehyde groups, and its chemical structure was characterized by elemental analysis, 1H and 31P NMR, and Fourier transform infrared (FTIR) spectroscopy. A new phosphazene-based epoxy resin (PN-EP) was successfully synthesized through the reaction between diglycidyl ether of bisphenol-A (DGEBA) and PN-OH, and its chemical structure was confirmed by FTIR and gel permeation chromatography. Four PN-EP thermosets were obtained by curing with 4,4′-diaminodiphenylmethane (DDM), dicyandiamide (DICY), novolak and pyromellitic dianhydride (PMDA). The reactivity of PN-EP with the four curing agents presents an increase in the order of DDM, PMDA, novolak and DICY. An investigation on their thermal properties shows that the PN-EP thermosets achieve higher glass-transition and decomposition temperatures in comparison with the corresponding DGEBA ones while their char yields increase significantly. The PN-EP thermosets also exhibit excellent flame retardancy. The thermosets with novolak, DICY and PMDA achieve the LOI values above 30 and flammability rating of UL94 V-0, whereas the one with DDM reaches the V-1 rating. The nonflammable halogen-free epoxy resin synthesized in this study has potential applications in electric and electronic fields in consideration of the environment and human health. 相似文献
15.
Studies on the effect of different levels of toughener and flame retardants on thermal stability of epoxy resin 总被引:1,自引:0,他引:1
Baljinder K. Kandola Bhaskar Biswas Dennis Price A. Richard Horrocks 《Polymer Degradation and Stability》2010,95(2):144-152
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage. 相似文献
16.
Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties 总被引:1,自引:0,他引:1
L.A. Mercado 《Polymer Degradation and Stability》2006,91(11):2588-2594
Epoxy resins with different silicon contents were prepared from silicon-containing epoxides or silicon-containing prepolymers by curing with 4,4′-diaminodiphenylmethane. The reactivity of the silicon-based compounds toward amine curing agents was higher than that of the conventional epoxy resins. The Tg of the resulting thermosets was moderate and decreased when the silicon content increased. The onset decomposition temperatures decreased and the char yields increased when the silicon content increased. Epoxy resins had a high LOI value, according to the efficiency of silicon in improving flame retardance. 相似文献
17.
18.
Synthesis and thermal characterization of phosphorus containing siliconized epoxy resins 总被引:3,自引:0,他引:3
Siliconized epoxy matrix resin was developed by reacting diglycidyl ethers of bisphenol A (DGEBA) type epoxy resin with hydroxyl terminated polydimethylsiloxane (silicone) modifier, using γ-aminopropyltriethoxysilane crosslinker and dibutyltindilaurate catalyst. The siliconized epoxy resin was cured with 4, 4-diaminodiphenylmethane (DDM), 1,6-hexanediamine (HDA), and bis (4-aminophenyl) phenylphosphate (BAPP). The BAPP cured epoxy and siliconized epoxy resins exhibit better flame-retardant behaviour than DDM and HDA cured resins. The thermal stability and flame-retardant property of the cured epoxy resins were studied by thermal gravimetric analysis (TGA) and limiting oxygen index (LOI). The glass transition temperatures (Tg) were measured by differential scanning calorimetry (DSC) and the surface morphology was studied by scanning electron microscopy (SEM). The heat deflection temperature (HDT) and moisture absorption studies were carried out as per standard testing procedure. The thermal stability and flame-retardant properties of the cured epoxy resins were improved by the incorporation of both silicone and phosphorus moieties. The synergistic effect of silicone and phosphorus enhanced the limiting oxygen index values, which was observed for siliconized epoxy resins cured with phosphorus containing diamine compound. 相似文献
19.
A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties 总被引:1,自引:0,他引:1
A flame-retardant epoxy resin (EP) was synthesized based on a novel reactive phosphorus-containing monomer, 4-[(5,5-dimethyl-2-oxide-1,3,2-dioxaphosphorinan-4-yl)oxy]-phenol (DODPP), and its structures were characterized by FTIR, 1H NMR and 31P NMR spectra. The DODPP-EP3/LWPA (low molecular weight polyamide), which contains 2.5% phosphorus, can reach UL-94 V-0 rating and a limiting oxygen index (LOI) value of 30.2%. The thermal properties and burning behaviours of cured epoxy resins were investigated by differential scanning calorimeter (DSC), thermogravimetry (TG), LOI, UL-94 tests and cone calorimetry. The morphologies of residues of cured epoxy resins were investigated by scanning electron microscopy (SEM). DSC shows that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA shows that the onset decomposition temperatures and the maximum-rate decomposition temperatures decrease, while char yields increase, with the increase of phosphorus content. The data from the cone calorimeter tests give the evidence that heat release rate (HRR), peak heat release rate (PHRR), average heat release rate (Av-HRR), average mass loss rate (Av-MLR) and the fire growth rate index (FIGRA) decrease significantly for DODPP-EP3/LWPA. SEM shows that the DODPP-EP3/LWPA forms lacunaris and compact charred layers which inhibit the transmission of heat during combustion. 相似文献
20.
Li-Jun Qian Long-Jian YeGuo-Zhi Xu Jing LiuJia-Qing Guo 《Polymer Degradation and Stability》2011,96(6):1118-1124
A novel flame retardant additive hexa-(phosphaphenanthrene -hydroxyl-methyl-phenoxyl)-cyclotriphosphazene (HAP-DOPO) with phosphazene and phosphaphenanthrene double functional groups has been synthesized from hexa-chloro-cyclotriphosphazene, 4-hydroxy-benzaldehyde and 9,10-dihydro-9-oxa-10- phosphaphenanthrene 10-oxide(DOPO). The structure of HAP-DOPO was characterized by Fourier transformed infrared (FT-IR) spectroscopy and 1H nuclear magnetic resonance (1H NMR) and 31P nuclear magnetic resonance (31P NMR). The additive HAP-DOPO was blended into diglycidyl ether of bisphenol-A (DGEBA) to prepare flame retardant epoxy resins. The flame retardant properties and thermal properties of the epoxy resins cured by 4, 4′-Diamino-diphenyl sulfone (DDS) were investigated from the differential scanning calorimeter (DSC), the thermogravimetric analysis (TGA), UL94 test, the limiting oxygen index (LOI) test and Cone calorimeter. Compared to traditional DOPO-DGEBA and ODOPB-DGEBA thermosets, the HAP-DOPO/DGEBA thermosets have higher Tgs at the same UL94 V-0 flammability rating for their higher crosslinking density and have higher char yield and lower pk-HRR at same 1.2 wt.% phosphorus content which confirm that HAP-DOPO has higher flame retardant efficiency on thermosets. The scanning electron microscopy (SEM) results shows that HAP-DOPO in DGEBA/DDS system obviously accelerate formation of the sealing, stronger and phosphorus-rich char layer to improve flame retardant properties of matrix during combustion. 相似文献