首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of ultraviolet (UV) light on the thermooxidative stability of Linear Low Density Polyethylene(LLDPE) films was studied. LLDPE was stabilized with phenolic type antioxidant known as Irganox 1010, hindered amine light stabilizer known as Chimmasorb 944 and phenolic type gamma stabilizer. The influence of these additives on the thermooxidative stability of gamma and UV irradiated LLDPE were investigated by isothermal Differential Scanning Calorimeter (DSC). The oxidation induction time (OIT) experiments indicate that antirad free LLDPE films which contains antioxidant and UV stabilizer are more sensitive to gamma and UV radiation. On the other hand, films which contain antirad and irradiated to different doses of γ-radiation demonstrated improved thermooxidative stability.  相似文献   

2.
The mechanical and thermal behaviors of linear low density polyethylene (LLDPE) pipe with variation in thermal exposure time were studied. The prolongation of thermal exposure time leads to a progressive increase, until 6000 h, in tensile strength and a slight increase in hardness, while a proportional decrease in elongation at break. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density and the decrease in chain mobility due to thermal oxidation as the exposure time increases. The additional ageing to the antioxidant-depleted LLDPE pipe induces the formation of T2 endotherm, which leads to a negative effect in mechanical properties. Long-term hydrostatic pressure test result implies the existence of transition point from ductile to brittle fracture in terms of the thermal exposure time. Chemiluminescence (CL) and oxidation induction time (OIT) tests are employed to monitor the thermo-oxidative degradation of LLDPE pipe. The CL emission intensity increases with increasing with thermal exposure time. Furthermore, the OIT result suggests that after 6000 h of the thermal ageing, the depletion of antioxidant originally added in LLDPE pipe occurs. Fourier transform-infrared spectroscopy results show the increase of carbonyl (-CO) and hydroxyl (O-H) function groups on the surface of thermally exposed LLDPE pipe. This result suggests that the hydrocarbon groups locally undergo the oxidation on the LLDPE surface due to thermal degradation.  相似文献   

3.
彭懋 《高分子科学》2015,33(8):1114-1124
In this study,effects of oscillatory shear with different frequencies(0-2.5 Hz) and amplitudes(0-20 mm) on the mechanical properties and crystalline morphology of linear low density polyethylene(LLDPE) were investigated.It was found that the mechanical properties of LLDPE are improved because of the more perfect crystalline structure when LLDPE crystallizes under low-frequency and small-amplitude(0.2 Hz/4 mm) oscillatory shear.The mechanical properties can be further improved by increasing either the frequency or the amplitude of oscillatory shear.The Young's modulus and tensile strength of LLDPE are improved by 27% and 20%,respectively,when the frequency is increased to 2.5 Hz and the amplitude is maintained at 4 mm; while the Young's modulus and tensile strength are improved by 49% and 47%,respectively,when the amplitude is increased to 20 mm and the frequency is remained as 0.2 Hz.The crystallinity and microstructure of LLDPE under different oscillatory shear conditions were investigated by using differential scanning calorimetry,wide angle X-ray diffraction and scanning electron microscopy to shed light on the mechanism for the improvement of mechanical properties.  相似文献   

4.
The investigation of representative details in the lamellar microstructure of LDPE observed after controlled chlorosulfonation using both EM and SAXD is reported. For this purpose melt crystallized PE with two branch contents (=0.28 and 2.53 branches per 102CH2) has been prepared using Kanig's technique over a range of temperatures and treatment times. During the first treatment hours the selective incorporation of electron-dense atoms at the lamellar surface produces a macroscopic weight increase, swelling of the sample and a concurrent decrease of the SAXS intensity. The main result, however, is that the thickness of the lamellar structure does not vary with treatment time. After long chlorosulfonation times a saturation of electron-dense atoms within the surface layer and a reduction in the lateral dimensions of the lamellae take place. Optimum conditions for revealing the representative morphology are such as to lead to a weight increase of 50% for PE with=0.28 of branches and only to an increase of 10% for material of branch content represented by an value of 2.53.On leave from Inst. Estructura de la Materia, Madrid-6. Spain  相似文献   

5.
The morphology and the crystallization behavior of blends of linear low density polyethylene (LLDPE) with an experimental sample of a semiflexible liquid crystalline polymer (SBH 112 by Eniricerche, Italy) have been studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and scanning electron microscopy (SEM). The blends possess a two-phase morphology, due to immiscibility of the two components. SEM observations show that dispersion of the minor SBH phase is favored at low (相似文献   

6.
Blends of recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) were compatibilized with poly(styrene-ethylene/butyldiene-styrene) (SEBS) and maleic anhydride-grafted poly(styrene-ethylene/butyldiene-styrene) (SEBS-g-MA). Effects of compatilizer were evaluated systematically by study of mechanical, thermal and morphology properties together with crystallization behavior of PET. Tensile properties of the blends were improved effectively by the addition of 10 wt% SEBS-g-MA, elongation at break and charpy impact strength were increased with the increasing content of compatilizer. SEBS-g-MA is more effectual on mechanical properties of R-PET/LLDPE blends than SEBS. DSC analysis illustrates crystallinities of PET and LLDPE were increased by compatilizer at annealing condition. WAXD and FT-IR spectra show that annealing influences crystallization behavior of PET. Different compatilizer content results in different morphology structure, in particular, higher SEBS-g-MA content can induce the formation of a salami microstructure.  相似文献   

7.
Natural (outdoor) weathering test was performed to investigate the UV stability of thin films (0.06 mm) of linear low density polyethylene (LLDPE) and low density polyethylene (LDPE). The PE films were prepared from various formulations of LLDPE and LDPE resins. Some of these films contained a single high molecular mass HALS only, along with a primary antioxidant (i.e. Irganox 1010) and a secondary antioxidant (i.e. Irgafos 168 or Alkanox TNPP), while others contained HALS and UVA (i.e. Chimassorb 81 or Tinuvin P or Tinuvin 326) along with these antioxidants. The HALS used was either an oligomeric or a synergistic mixture of a high molecular mass (HMM) hindered amine stabilizer and co-additives. The UV stability was investigated by exposing the prepared films at 45° towards south in the direct sunshine up to 365 days. Fifty percent of tensile strength retention was determined for all these exposed films and it was found that the films containing a single HALS gained improved UV stability by about two to 12 fold over the pure films. On the other hand, films that contained a combination of HALS and UVA obtained further improved UV stability over the films containing a single HALS (both have antioxidants). Films containing a single HALS reached 50% TS retention within 205 days, whereas, films containing a combination of HALS and UVA reached 50% TS retention within 590 days, which is about three times further improvement in UV stability.  相似文献   

8.
The morphologies of films blown from a low‐density polyethylene (LDPE), a linear low‐density polyethylene (LLDPE), and their blend have been characterized and compared using transmission electron microscopy, small‐angle X‐ray scattering, infrared dichroism, and thermal shrinkage techniques. The blending has a significant effect on film morphology. Under similar processing conditions, the LLDPE film has a relatively random crystal orientation. The film made from the LDPE/LLDPE blend possesses the highest degree of crystal orientation. However, the LDPE film has the greatest amorphous phase orientation. A mechanism is proposed to account for this unusual phenomenon. Cocrystallization between LDPE and LLDPE occurs in the blowing process of the LDPE and LLDPE blend. The structure–property relationship is also discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 507–518, 2002; DOI 10.1002/polb.10115  相似文献   

9.
Polymeric methylene diphenyl diisocyanate (PMDI) was added as chain extender to a blend of recycled poly(ethylene terephthalate) (R-PET) and linear low density polyethylene (LLDPE) with compatibilizer of maleic anhydride-grafted poly(styrene-ethylene/butadiene-styrene) (SEBS-g-MA). Hydroxyl end groups of PET can react with both isocyanate groups of PMDI and maleic anhydride groups of SEBS-g-MA, which are competing reactions during reactive extrusion. The compatibility and properties of the blends with various contents of PMDI were systemically evaluated and investigated. WAXD results and SEM observations indicated that chain extension inhibits the reaction between PET and SEBS-g-MA. As the PMDI content increased, the morphology of dispersed phase changed from droplet dispersion to rodlike shape and then to an irregular structure. The DSC results showed that the crystallinity of PET decreased in the presence of PMDI, and the glass transition temperature (Tg) of PET increased with addition of 0-0.7 w% PMDI. The impact strength of the blend with 1.1 w% PMDI increased by 120% with respect to the blend without PMDI, accompanied by only an 8% tensile strength decrease. It was demonstrated that the chain extension of PET with PMDI in R-PET/LLDPE/SEBS-g-MA blends not only decreased the compatibilization effect of SEBS-g-MA but also hindered the crystallization of PET.  相似文献   

10.
To evaluate the compatibilizing effects of isocyanate (NCO) functional group on the polyethylene terephthalate/low density polyethylene (PET/LDPE) blends, LDPE grafted with 2-hydroxyethyl methacrylate-isophorone diisocyanate (LDPE-g-HI) was prepared and blended with PET. The chemical reaction occurred during the melt blending in the PET/LDPE-g-HI blends was confirmed by the result of IR spectra. In the light of the blend morphology, the dispersions of the PET/LDPE-g-HI blends were very fine over the PET/LDPE blends. DSC thermograms indicated that PET microdispersions produced by the slow cooling of the PET/LDPE-g-HI blends were largely amorphous, with low crystallinity, due to the chemical bonding. The tensile strengths of the PET/LDPE-g-HI blends were higher than those of the PET/LDPE blends having a poor adhesion. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 447–453, 1998  相似文献   

11.
In developing countries, plastic solid waste (PSW) poses a serious threat due to the increase in the dependency on landfilling as well as other environmental issues. Hence, valorising the accumulated waste is essential to promoting more environmentally friendly practices. In this work, the mechanical and physical properties of virgin linear low density (LLDPE) and LLDPE blends with PSW are reported. The formulations studied contained the following virgin to waste ratios (wt.%/wt.%): 100/0, 75/25, 50/50, 25/75 and 10/90. The effect of photo-degradation on the studied specimens was investigated using accelerated weathering tests in a UV chamber. Young's modulus showed an increase with exposure duration due to change in the samples' crystallinity. The loss of mechanical integrity (i.e. stress and strain at rupture) of the samples studied was related to the photo-degradation mechanisms, namely cross-linking and photo-oxidation. Haze and light transmission measured indicated that there was a loss of the amorphous regions in the samples studied after about 200 h of continuous exposure. The total change in colour (ΔE) was estimated but did not show a clear trend, indicating a clear dependency on wash mechanism and continuous loss of polymer colour and degradation.  相似文献   

12.
The combined effects of selected carbon black pigments and hindered light stabilisers (HALS) on the UV stabilities of linear low density polyethylene film have been studied under UVA and UVB fluorescent radiation sources. While the presence of HALS do not change the chemistry of film photodegradation, whether they are low or high molecular variants, their presence significantly extends film lifetime relative to the sum of the effects of carbon black and HALS individually. These lifetime extensions may be defined in terms of a synergy factor defined with respect to film time to lose a specific percentage of a tensile property, namely t20, the time to lose 20% of initial elongation-at-break, or the carbonyl index associated with this condition. It is proposed that possible causes of this synergy are a result of the UV screening effect of the carbon black particles which provide lower concentrations of polymer radicals for the HALS component to interact with and/or an accompanying thermal stabilising effect by the latter as a consequence of the higher polymer local temperature during irradiation of pigmented films.  相似文献   

13.
Fullerene (C60)/high density polyethylene (HDPE) composites were studied in order to understand for their behaviors on thermal and thermo-oxidative degradation. Under different atmosphere, the influences of C60 on the thermal stability of HDPE are different. Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) demonstrate that in N2 the addition of C60 increases the onset decomposition temperature by about 10 °C with more heavy compounds (more than 34 carbon). Also the thermal stability of HDPE in air is remarkably improved with the addition of C60. When the content of C60 is 2.5 wt% the onset decomposition temperature increases by about 91 °C. The results of viscoelastic behavior and gel content reveal that C60 can trap the alkyl radicals and alkyl peroxide radicals to inhibit hydrogen abstraction to suppress the chain scission and preserve the long chain structure. However, in the absence of C60 or with low C60 concentration, hydrogen abstraction occurs, resulting in the formation of a series of alkyl radicals and alkyl peroxide radicals, which accelerates the chain scission and plays a leading role in the thermal oxidative degradation.  相似文献   

14.
本文研究了在氢气氛围及HZSM-5、H-Beta、NaY和TiO2催化剂作用下玉米芯与LDPE混合物(重量比2∶8)的共热解情况。通过催化热解所得油相液体的烃族分析及碳数分布发现:在催化剂作用下,油相液体的碳数分布变窄,共同热解所得气体产率最高的是H-Beta催化体系,液体产率最高的是NaY,残渣量最多的是TiO2催化体系。催化共热解所得油相液体的碳数分布主要集中在C4~C19之间,使用NaY可获得高品位的油相液体,其研究法辛烷值(RON)为97.5;水相液体中的主要物质是醋酸,加入催化剂后其含量明显增加。四种催化剂中,醋酸生成量最多的是NaY催化剂,其次是HZSM-5,最后是H-Beta和TiO2。其中在NaY催化体系作用下生成的水相液体组分中,醋酸含量为57.8%。  相似文献   

15.
High density polyethylene (HDPE) was catalytically degraded using a laboratory fluidised bed reactor in order to obtain high yield of gas fractions at mild temperatures, between 350 and 550 °C. The catalyst used was nanocrystalline HZSM-5 zeolite. High yields of butenes (25%) were found in the gas fractions, which were composed mainly of olefins. Waxes were wholly composed of linear and branched paraffins, with components between C10 and C20. The effects of both temperature and polymer to catalyst ratio on the product yield were studied. Gas conversion was dramatically decreased when the operation temperature was low (below 450 °C) or when the polymer to catalyst ratio was greatly increased (9.2). Gas and wax compositions significantly altered over 500 °C, showing that a part of the HDPE was degraded thermally, increasing the olefin concentration in the waxes. The same variation was observed in the experiments carried out at high polymer to catalyst ratios, obtaining a 50% olefinic concentration in the waxes. The differences observed in product distributions can be attributed to both thermal and catalytic degradations.  相似文献   

16.
《先进技术聚合物》2018,29(1):52-60
Polyethylene terephthalate (PET) was melt blended with linear low density polyethylene (LLDPE) and subsequently compounded with glass fibers (GF) as reinforcements at percentages ranging from 15 to 45 wt% of LLDPE and 5 to 30 wt% of GF. Thermal, morphological, and mechanical properties of the prepared composites were investigated. It was found that compounding PET/LLDPE blends with GF would be beneficial in producing composites that are thermally stable with good mechanical properties. For example, the impact strength of the composites containing 85/15 wt% (PET/LLDPE) at relatively high loading of GF, ie, from 15 to 30 wt%, was higher than that of the GF‐reinforced neat PET. When increasing the percentage of LLDPE in the composites, the impact strength increased with increasing GF content, and this was also better than that of GF‐reinforced PET whose impact strength drastically decreased upon increasing the GF%. The improvement in mechanical properties of the composite, we suggest, should be correlated with the morphologies of the composites where the visualized interface adhesion tended to be better at higher loadings of both LLDPE and GF.  相似文献   

17.
Summary The elongational viscosity of low density polyethylenes depends on the mechanical history as is demonstrated on the samples IUPAC A and IUPAC C and some other specimens. IUPAC C which stems from the same batch as IUPAC A but has undergone an additional extrusion shows a significantly lower elongational viscosity whereas the shear viscosity remains nearly unchanged. The elastic behaviour measured by the recoverable strain is not influenced by a mechanical pretreatment. The viscosity decrease is found to be canceled to its greatest extent after dissolving the sample in xylene and evaporating the solvent. Pure elongation seems to be more effective in creating the viscosity decrease than pure shear. A similar effect could not be found for linear polyethylene and polystyrene. This result leads to the assumption that the branched molecules give rise to a mechanically induced change of the entanglement structure which can be reverted by dissolving. The evidence of the elongational behaviour for film blowing is discussed.Dedicated to Professor Dr. Reif on the occasion of his 60th birthday.  相似文献   

18.
Nonisothermal crystallization kinetics and melting behavior of bimodal-medium-density- polyethylene (BMDPE) and the blends of BMDPE/LDPE were studied using differential scanning calorimetry (DSC) at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of BMDPE. The BMDPE DSC data were analyzed by the theory of Ozawa. Kinetic parameters such as the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the peak temperatures (Tp) and the half-time of crystallization (t1/2) etc. were determined at various scanning rates. The appearance of double melting peaks and the double crystallization peaks in the heating and cooling DSC curves of BMDPE/LDPE blends indicated that the BMDPE and LDPE could crystallize respectively.  相似文献   

19.
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low‐density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 °C. Constitutive equations were derived for the time‐dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress‐strain relations involve five material constants that were found by fitting the observations. Fair agreement was demonstrated between the experimental data and the results of numerical simulation. This study focuses on the effects of strain rate and annealing temperature on the adjustable parameters in the constitutive equations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1638–1655, 2003  相似文献   

20.
The influence of the repeated extrusion on the molecular parameters of low density polyethylene (LDPE) Bralen NA 7-25 was studied. Virgin polyethylene was submitted up to 20 extrusion cycles and the processed samples were fractioned using precipitation fractionation. Non-fractionated samples and the individual polymer fractions were characterized by their weight average molar masses Mw (static light scattering), number average molar masses Mn (osmometry) and limiting viscosity numbers [η] (viscometry). Rheological properties in terms of shear viscosity curve, zero shear viscosity and flow activation energy were also determined by using high pressure capillary rheometer. The course of the changes in molecular parameters of LDPE is influenced both by the initial polymer structure and by the changes induced by the mechano-chemical degradation. The suggested degradation mechanisms during multiple extrusion of Bralen are chain scission predominating in the early stage of processing followed by recombination of macromolecules resulting in crosslinking and formation of microgel, which is clearly notable for the samples extruded 3-20 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号