首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
This work describes a halogen-free flame retardant material consisting of a polar ethylene copolymer, calcium carbonate and silicone elastomer. The flame retardant properties when using poly(ethylene-co-methacrylic acid) (EMAA) and poly(ethylene-co-butyl acrylate) (EBA) as the copolymer have been compared. Rheological measurements showed an increase in complex viscosity above 250 °C due to ionomer formation between acidic groups in the polymer and calcium ions. The increase in viscosity occurs at lower temperatures with the EMAA material and the increase is stronger. This has great impact on the fire performance, as shown with cone calorimetry and dripping test. In order to further elucidate the flame retardant mechanism in detail, thermogravimetric analysis and infrared spectroscopy have been used. The influence of the amount of comonomer and melt flow ratio of the polymer is also commented.  相似文献   

2.
A novel phosphazene cyclomatrix network polymer poly(cyclotriphosphazene-co- pentaerythritol) (PCPP) was synthesized and characterized based on an attempt to look for a high efficient and green intumescent flame retardant. A series of flame retardant polylactide (FR-PLA) composites containing PCPP were prepared by melt blending method. Thermal degradation behavior and combustion properties of FR-PLA composites were evaluated through thermogravimetric analysis, UL-94 experiments, limiting oxygen index and cone calorimeter tests. It is found that the weight of residues for FR-PLA composites improved greatly with the addition of PCPP. Additionally, PCPP show a high flame retardant efficiency for PLA, UL-94 V-0 could be passed only containing 5 wt% PCPP. Fourier transform infrared spectra and scanning electronic microscopy investigations reveal that the residual chars are compact and foaming containing P-O-C structure, which restrains the development of fire and increases the flame retardant properties.  相似文献   

3.
Novel intumescent flame-retardant poly(lactic acid) (PLA/IFR)/organo-modified α-zirconium phosphate(OZrP) nanocomposites were prepared via incorporation of charring agent (CA), ammonium polyphosphate (APP) and OZrP into PLA. OZrP was synthesized directly by a solvent thermal method. The morphological characterization of PLA/IFR/OZrP nanocomposites was conducted by wide angle X-ray diffraction (WXRD) and transmission electron microscopy (TEM). The effect of the OZrP on flame retardancy and the thermal stability of PLA/IFR composites were studied by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter test. The TGA data illustrated that the OZrP could increase the residue and significantly improve the flame retardancy of PLA/IFR/OZrP nanocomposites showing an excellent synergistic effect. The addition of OZrP to the flame-retardant PLA increases the LOI and enhances the UL-94 rating. Cone calorimeter tests gave clear evidence that the incorporation of OZrP into PLA/IFR composites resulted in the significant reduction of the heat release rate (HRR), low total heat release (THR) and high amount of char residues during combustion. The flame-retardant mechanism of PLA/IFR/OZrP nanocomposites may correspond to the intumescent flame-retardant mechanism and catalyzed carbonization mechanism caused by OZrP.  相似文献   

4.
A novel functionalized α-zirconium phosphate (F-ZrP) modified with intumescent flame retardant was synthesized by co-precipitation method and characterized. Poly (lactic acid) (PLA)/F-ZrP nanocomposites were prepared by melt blending method. The thermal stability and combustion behavior of PLA/F-ZrP nanocomposites were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL-94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). The results showed that the addition of flame retardant F-ZrP slightly affect PLA's thermal stability, but significantly improve the flame retardancy of PLA composites. In comparison with neat PLA, the LOI value of PLA/F-ZrP was increased from 19.0 to 26.5, and the UL-94 rating was enhanced to V-0 as the loading of F-ZrP at 10%. SEM results suggested the introduction of F-ZrP in the PLA system can form compact intumescent char layer during burning. All these results showed that the F-ZrP performed good flame retardancy for PLA.  相似文献   

5.
The flame retardation of polypropylene (PP) composites containing melamine phosphate (MP) and pentaerythritol phosphate (PEPA) was characterized by cone calorimeter. The formation mechanism of the char obtained from the combustion of the composites after cone calorimeter testing was studied by scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Raman diffusion. Results demonstrated that the PP composite containing MP and PEPA showed good flame retardancy. It had been found that the intumescent char could be principally divided into three parts, i.e. outer, middle and inner char layer, according to their different structures and components.  相似文献   

6.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

7.
Synthetic hydromagnesite obtained from an industrial by-product was evaluated as a non-halogenated flame retardant. It was used in combination with aluminium hydroxide (ATH) and compared with commercial flame retardants like magnesium hydroxide (MH) and natural hydromagnesite-huntite (U) in a polyolefin system of low-density polyethylene/poly(ethylene-co-vinyl acetate) (LDPE/EVA).The thermal stability and flame behaviour of the halogen free flame retarded composites were studied by thermogravimetric and differential thermal analysis (TG-DTA), limiting oxygen index (LOI), epiradiateur and cone calorimeter. It has been shown that synthetic hydromagnesite could be an alternative solution to the use of MH in non-halogenated flame retardant systems in EVA.  相似文献   

8.
Aluminum hypophosphite (AHP) was introduced into polylactide/intumescent flame retardant (PLA/IFR) systems by melt blending. The flame retardant and thermal properties of the PLA composites were investigated. The results suggest that a synergistic effect exists between IFR and AHP on the char formation and anti‐dripping behavior of PLA composites. The PLA/IFR composites containing 10 wt% IFR can pass the UL‐94 V‐0 rating but the test is accompanied by heavy melt dripping. For the PLA/AHP a UL‐94 V‐2 rating is obtained for the same loading of IFR. However, the composites containing 7 wt% IFR and 3 wt% AHP pass the UL‐94 V‐0 rating with modified dripping behavior. Moreover, the char from combustion of PLA/IFR is flexible but of poor quality. That for PLA/AHP is brittle with many cracks. In contrast, that for PLA/IFR/AHP is strong and compact. Thus it can resist the erosion due to heat and gas formation and protect the inside of the matrix. In addition, AHP causes the crosslinking among APP, which promotes the char formation and prevents the melt dripping. This is the main reason for the good flame retardant properties of PLA composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

11.
Calcium alginate fibers were prepared by wet spinning of sodium alginate into a coagulating bath containing calcium chloride.The thermal degradation and flame retardancy of calcium alginate fibers were investigated with thermal gravimetry(TG),X-ray diffraction(XRD),limiting oxygen index(LOI) and cone calorimeter(CONE).The results show that calcium alginate fibers are inherently flame retardant with a LOI value of 34,and the heat release rate(HRR),total heat release(THR),CO and CO_2 concentrations during ...  相似文献   

12.
Layer by layer architectures consisting of four layer repetitive unit (QL) based on poly(diallydimethylammonium chloride)/poly(acrylic acid)/poly(diallydimethylammonium chloride)/ammonium polyphosphate have been deposited on cotton, polyester and their blends in order to promote the formation of an aromatic and stable carbonaceous structure (char) during combustion. The LbL-treated fabrics have been subjected to flammability (reaction to flame application) and combustion (reaction to different external heat fluxes) tests. The coatings were able to remarkably enhance the char formation of each substrate just after 1QL deposition; furthermore, 5 and 10QL assemblies have favoured the formation of intumescent-like structures with further improvement of the final residue. As a consequence, the treated fabrics have shown a strong reduction of the flammability (afterglow and incandescent melt dripping suppression) and combustion (reduced heat released). Infrared spectroscopy has pointed out the aromatic nature of the residues left after the combustion.  相似文献   

13.
To study the influence of the T31 content on the combustion properties and thermal degradation behaviors of flame-retardant epoxy composites, a series of flame-retardant epoxy composites were prepared using E-44 epoxy resin as matrix, T31 curing agent as curing agent, and intumescent flame retardant (IFR, based on phosphorus acid, melamine, and pentaerythritol) as flame retardant. The influence of T31 content on combustion behaviors and thermal degradation properties of the flame-retardant epoxy composites were studied using cone calorimeter test (CCT) and thermal-gravimetric analysis (TG), respectively. The cone calorimeter test results indicate that the decrease of T31 can significantly decrease the HRR, THR, SPR, and enhance the char residue of the epoxy composites. EP-4 with 7.0 wt% T31 shows the lowest HRR, SPR and the highest char residue. Furthermore, the TG results indicate that the EP-4 has the highest char residue among all the epoxy composites.  相似文献   

14.
The flame retardancy and thermal stability of ammonium polyphosphate/tripentaerythritol (APP/TPE) intumescent flame retarded polystyrene composites (PS/IFR) combined with organically-modified layered inorganic materials (montmorillonite clay and zirconium phosphate), nanofiber (multiwall carbon nanotubs), nanoparticle (Fe2O3) and nickel catalyst were evaluated by cone calorimetry, microscale combustion calorimetry (MCC) and thermogravimetric analysis (TGA). Cone calorimetry revealed that a small substitution of IFR by most of these fillers (≤2%) imparted substantial improvement in flammability performance. The montmorillonite clay exhibited the highest efficiency in reducing the peak heat release rate of PS/IFR composite, while zirconium phosphate modified with C21H26NClO3S exhibited a negative effect. The yield and thermal stability of the char obtained from TGA correlated well with the reduction in the peak heat release rate in the cone calorimeter. Since intumesence is a condensed-phase flame process, the MCC results showed features different from those obtained from the cone calorimeter.  相似文献   

15.
A semi‐bio‐based synergist (N, N′, N″‐1, 3, 5‐triazine‐2, 4, 6‐triyltris‐glycine [TTG]) was prepared by using glycine and cyanuric chloride. The structure of TTG was characterized by 1H NMR and Fourier transform infrared spectroscopy. The TTG was applied in polypropylene (PP)/intumescent flame‐retardant compounds to improve its flame retardancy. The flame‐retardant properties of PP compounds were evaluated by limiting oxygen index and vertical burning tests (UL‐94). The results showed that 17 wt% intumescent flame‐retardant and 1 wt% TTG makes PP achieve the UL‐94 V‐0 rating without drippings, and the limiting oxygen index value is increased to 29.5 vol%. The thermal degradation behavior and char morphology of PP compounds were investigated by thermogravimetric analysis and scanning electron microscopy. The results indicated that TTG accelerates the formation of char layer, regulates the porous structure of char layer, and enhances its barrier property. Therefore, the temperatures of PP compound after two ignitions during the UL‐94 test are decreased significantly as shown in infrared thermal imaging. In addition, the combustion characteristics of PP compounds were investigated by cone calorimeter. The peak of heat release rate (PHRR) of PP compound is 67% reduced, and the tPHRR is delayed from 223 to 430 seconds, indicates that the combustion risk of PP compound is reduced.  相似文献   

16.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The synergistic effect of four different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), boron silicon containing preceramic oligomer (BSi) and lanthanum borate (LaB), were studied to improve the flame retardancy of a polypropylene (PP) intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated by limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis (TGA) and cone calorimeter tests. The addition of 20 wt% intumescent flame retardant (IFR) improves the flame retardancy by increasing the char formation. According to LOI and UL-94 test, boron compounds show their highest synergistic effect at 1 wt% loading. BPO4 containing composite shows the highest LOI (30), lowest maximum heat release rate (HRR) and lowest total heat release rate (THR) value. Although the char yield increases as the amount of boron compounds increases, the flame retarding effect decreases. Cone calorimeter and TGA data indicate that the boron compounds are likely to show their synergistic effect by reinforcing the integrity of char which improves its barrier effect rather than increasing the char yield.  相似文献   

18.
Kaolin clay was introduced into an intumescent flame retardant (IFR) system containing ammonium polyphosphate as an acid source and pentaerythritol as a carbonization agent in order to improve the thermal stability and flame retardancy of polypropylene (PP) composite. The flame retardancy and smoke suppression was evaluated by the limiting oxygen index, vertical burning UL‐94, and cone calorimeter (CONE) tests. The limiting oxygen index value was increased from 30 to 33 at the presence of 2 phr kaolin. The peak heat release rate value decreased from 1002 kW/m2 of neat PP to 318 kW/m2 of PP/40 phr IFR and then to 222 kW/m2 of PP/38 phr IFR/2 phr kaolin. The time of the peak heat release rate was significantly prolonged after the introduction of kaolin. The morphology of char after combustion was characterized by a scanning electron microscope, and it revealed more compact char structure that was obtained at the presence of kaolin. The mechanism of kaolin on improving the retardancy and smoke suppression of PP/IFR composite was proposed on the basis of X‐ray photoelectron spectroscopy analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
用锥形量热仪研究聚乙烯膨胀阻燃体系的燃烧性   总被引:11,自引:0,他引:11  
利用锥形量热仪在50kW·m-2热辐照条件下,研究了含淀粉膨胀阻燃线性低密度聚乙烯(LLDPE)体系的燃烧性,获得了最大热释放速率、总热释放、有效燃烧热、最大烟产生速率、总烟释放量及质量损失速度等参数.实验结果表明:含淀粉膨胀阻燃剂能明显降低LLDPE的热释放速率、总热释放和有效燃烧热,淀粉作为膨胀型阻燃剂中的成炭剂,可以部分代替季戊四醇,而对热释放速率影响不大,达到了阻燃和降低成本的目的.该膨胀体系使烟释放变得缓慢,但总烟释放量明显增大.在燃烧时使LLDPE更早地发生热降解,但热降解速度变得缓慢.  相似文献   

20.
Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号