首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methods for producing reference test materials for biodegradation evaluation tests have been studied. Mechanical crushing at low temperature of polymer pellets using dry ice was selected for the method of producing polymer powder of poly(lactic acid) (PLA). The powders were fractionated using 60 mesh (250 μm) and 120 mesh (125 μm) sieves. The size distributions were then measured. The average diameter of the PLA particles obtained by this method was 214.2 μm. The biodegradation speeds of these PLA polymer powders were evaluated by two methods based on the international standard and one in vitro method based on the enzymatic degradation. First, the degree of biodegradation for this PLA powder was 91% for 35 days in a controlled compost determined by a method based on ISO 14855-1 (JIS K6953) at 58 °C managed by the Mitsui Chemical Analysis and Consulting Service, Inc. (Japan). Second, these polymer powders were measured for biodegradation by the Microbial Oxidative Degradation Analyzer (MODA) in a controlled compost at 58 °C and 70 °C based on ISO/DIS 14855-2 under many conditions. The degree of biodegradation for this PLA powder was approximately 80% for 50 days. In addition, the polymer powders were biodegraded by Proteinase K which is a PLA degradation enzyme. This polymer powder was suitable as a reference material for the evaluation methods of biodegradation.  相似文献   

2.
The anaerobic biodegradation tests of polycaprolactone (PCL) and poly(lactic acid) (PLA) powders were done at thermophilic temperature (55 °C) under aquatic conditions (total solid concentrations of the used sludge were 1.73% (undiluted sludge) and 0.86% (diluted sludge)) using a newly developed evaluation system. With this system, the evolved biogas is collected in a gas sampling bag at atmospheric pressure. This method is more convenient than using a pressure transducer or inverted graduated cylinder submerged in water. The biodegradation of PCL powder (10 g, 125–250 μm) in the diluted sludge stopped in about 47 days when the biodegradability reached 92%. The biodegradability of PLA powder (10 g, 125–250 μm) in undiluted sludge was 91% at about 75 days. The biodegradability of PLA powder (10 g, 125–250 μm) in diluted sludge was 79% at about 100 days. The biodegradability of PLA powder (5 g, 125–250 μm) in diluted sludge was 80% at about 85 days. It was found that the PCL and PLA powders were quite degraded using the new evaluation method. In addition, the smaller particle size PCL powder was biodegraded faster.  相似文献   

3.
聚丁二酸丁二醇酯在堆肥条件下的生物降解性能研究   总被引:7,自引:1,他引:6  
根据ISO 14855的检测方法,研究了聚丁二酸丁二醇酯(PBS)在堆肥条件下的生物降解性能,结果 表明PBS具有良好的生物降解性,且其形态对其降解速率有显著的影响,降解速率:PBS粉末>PBS片>PBS 颗粒。对堆肥中的微生物进行分离鉴定,在所选堆肥中主要分离出四种菌株:杂色曲霉菌、青霉菌、芽包杆菌 和直杆高温多孢菌,它们对PBS的降解能力各不相同,其中最有效降解PBS的菌株是杂色曲霉菌。  相似文献   

4.
Poly(epsilon-caprolactone) (PCL) composite samples were prepared by polymerization and direct molding. The starting compound was epsilon-caprolactone monomer liquid combined with cellulose and inorganic fillers, using aluminium triflate as a catalyst at 80 degrees C, for 6 or 24 h. Cylinder-shaped PCL composite samples with a homogeneously dispersed cellulose filler were prepared with (-)M(n) = 4 600 ((-)M(w)/(-)M(n) = 2.9). The mechanical properties of the PCL composite samples were studied using compression test methods. The strength of a PCL composite with 50 wt.-% cellulose filler (10.8 MPa) was found to be lower than the PCL sample without fillers (19.2 MPa). The biobased content of the PCL composite with 50 wt.-% cellulose filler (51.67%) measured using accelerated mass spectrometry (AMS) was slightly higher than the carbon ratio of cellulose in the starting powder samples (41.3 mol-%). The biobased content of the polymer composite powders by AMS was found not to be affected by the presence of inorganic fillers, such as talc. The rate and extent of biodegradation, caused by Amano Lipase PS, of the PCL composite sample with cellulose filler (40% degradation in 4 d) was the same as that of a PCL sample without the cellulose filler.  相似文献   

5.
The new method to evaluate the anaerobic biodegradability of bioplastics, such as polycaprolactone (PCL) and poly (lactic acid) (PLA), under aquatic (slurry) conditions at 55 °C is applying. For this method, we prepared the sludge at 55 °C from the sludge at 37 °C by the method in which the sludge from the real tank operating at around 37 °C using cow manure and vegetable waste as the feed stock was preincubated at 55 °C. It was unknown at which stage the sludge during preincubation has the optimized anaerobic biodegradation activity of plastics. Four different stage sludges during preincubation (the sludge at 7 days after the start of preincubation at 55 °C, at 12 days, at 18 days, and at 40 days) were compared by the anaerobic biodegradation activity of PLA. The preincubated sludge at around 18 days (a gradual decrease in biogas evolution and a methane ratio over 60%) showed the highest biodegradation activity of PLA. In addition, the bacterial population in each sludge was analyzed by the denaturing gradient gel electrophoresis (DGGE) analysis of the amplified 16S rRNA gene fragments, however, the newly grown bacteria bands at 55 °C were not clearly detected.  相似文献   

6.
Conventional polymeric materials accumulate in the environment due to their low biodegradability. However, an increase in the biodegradation rate of these polymers may be obtained with the addition of pro-degrading substances. This study aimed to evaluate abiotic and biotic degradation of polyethylenes (PEs) using plastic bags of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) formulated with pro-oxidant additives as test materials. These packaging materials were exposed to natural weathering and periodically analyzed with respect to changes in mechanical and structural properties. After a year of exposure, residue samples of the bags were incubated in substrates (compost of urban solid waste, perlite and soil) at 58 °C and at 50% humidity. The biodegradation of the materials was estimated by their mineralization to CO2. The molar mass of the pro-oxidant-activated PE decreased and oxygen incorporation into the chains increased significantly during natural weathering. These samples showed a mineralization level of 12.4% after three months of incubation with compost. Higher extents of mineralization were obtained for saturated humidity than for natural humidity. The growth of fungi of the genera Aspergillus and Penicillium was observed on PE films containing pro-oxidant additives exposed to natural weathering for one year or longer. Conventional PE films exposed to natural weathering showed small biodegradation.  相似文献   

7.
Lactose (L) filled (0-40 wt.%) composites of metallocene linear low-density polyethylene (mLLDPE) were prepared to get a new, environmentally friendly polymeric material. The effect of L on the material was characterized through its mechanical, physico-chemical and rheological properties, and biodegradability in the composting environment (up to 4 months). The microorganisms present in the compost bed have shown great influence on the properties of the new material, as proved by the weight loss data, changes in FTIR-ATR spectra, tensile and rheological properties.The presence of L in the system does not influence tensile properties significantly up to the content of 40 wt.%. The biodegradation of the highest-filled composite has been found substantially higher than that of the others. This is in agreement with the results obtained through surface morphology study by SEM and assessing the presence of microbes in the compost bed where the composites were placed for biodegradation.  相似文献   

8.
We have evaluated the plasticizing effect of poly(butylene succinate) (PBS) and cellulose acetate butyrate (CAB). PBS and CAB were mixed with a melt-kneading machine. The tensile strength and strain at break in the case of the blend with 10% CAB in the PBS matrix were 547% and 35 MPa. It showed that CAB acted as a plasticizer for PBS. The biomass carbon ratio of the blends measured by accelerator mass spectrometry based on ASTM D6866 showed that the biomass carbon derived from a part of the CAB corresponded to the theoretical value of the polymer blend. The biodegradation of PBS with the CAB melt blend powders was evaluated by a microbial oxidative degradation analyzer under controlled compost conditions based on ISO 14855-2. PBS with 10% CAB was not degraded within 60 days due to the addition of CAB that could control the biodegradability of the PBS.  相似文献   

9.
A maturity sensor system was developed, based on the combination of three electrically measured parameters, pH, NH4+ concentration, and phosphatase activity in the water extracts of compost samples. One of these parameters, the apparent phosphatase activity in crude test solutions was determined using screen-printed carbon strips (SPCSs) coated with α-naphthyl phosphate (α-NP) in Nafion film. The phosphatase activity was monitored in connection with differential pulse voltammetry (DPV) with an aliquot (30 μL) of the test solution on SPCS. The phosphatase activity sensor was validated using alkaline phosphatase (ALP) in Tris-HCl buffer (pH 8.0) and acid phosphatase (ACP) in citric acid buffer (pH 5.0). The activity of the spiked enzymes in the water extract of the compost sample could be confirmed with the change of corresponding oxidation peak current signal of the product, α-naphthol. The water extracts of compost samples (n = 24) collected in various composting days were applied to our compost maturity sensor system, and the conventional germination tests. Using multiple regression analysis, the germination index (GI) was expressed by the multi-linear regression equation consisting of pH, NH4+ concentration, and the phosphatase activity. The calculated GI from the regression equation had a good correlation with the measured GI of the corresponding composts (r = 0.873). As a result, we have determined an equation for the determination of the compost stability using our portable sensor system rapidly at the composting site.  相似文献   

10.
In the present study the miscibility behaviour and the biodegradability of poly(ε-caprolactone)/poly(propylene succinate) (PCL/PPSu) blends were investigated. Both of these aliphatic polyesters were laboratory synthesized. For the polymer characterization DSC, 1H NMR, WAXD and molecular weight measurements were performed. Blends of the polymers with compositions 90/10, 80/20, 70/30 and 60/40 w/w were prepared by solution-casting. DSC analysis of the prepared blends indicated only a very limited miscibility in the melt phase since the polymer-polymer interaction parameter χ12 was −0.11. In the case of crystallized specimens two distinct phases existed in all studied compositions as it was found by SEM micrographs and the particle size distribution of PPSu dispersed phase increased with increasing PPSu content. Enzymatic hydrolysis for several days of the prepared blends was performed using Rhizopus delemar lipase at pH 7.2 and 30 °C. SEM micrographs of thin film surfaces revealed that hydrolysis affected mainly the PPSu polymer as well as the amorphous phase of PCL. For all polymer blends an increase of the melting temperatures and the heat of fusions was recorded after the hydrolysis. The biodegradation rates as expressed in terms of weight loss were faster for the blends with higher PPSu content. Finally, a simple theoretical kinetic model was developed to describe the enzymatic hydrolysis of the blends and the Michaelis-Menten parameters were estimated.  相似文献   

11.
The effect of morphological microstructure on the biodegradability of aliphatic polyester, poly(ϵ -caprolactone) (PCL) was studied in terms of crystallite size, crystallinity and amorphous and crystalline orientation factors. Microstructural changes during hydrolysis/biodegradation of the drawn PCL films were investigated by the conventional small and wide angle X-ray scattering methods. The lower was the draw ratio, the higher the hydrolytic degradability or biodegradability. With the increase of the hydrolysis time, the long period, at earlier stage, decreased; then slightly recovered and the crystallinity increased while the lamellar thickness remained unchanged. The amorphous orientation factors start to decrease at earlier stage and gradually go down to zero before the end of hydrolysis. In the case of crystalline orientation factor, although the values decrease with increasing hydrolysis time, they do not reach zero point. After the biodegradation for 60 days, crystallinity, crystal lateral size and lamellar thickness in all drawn PCL films decreased, and then it was confirmed that even crystalline regions were degraded for long term biodegradation test.  相似文献   

12.
A simple method was developed to separate Pu and Am using single column extraction chromatography employing N,N,N′,N′-tetra-n-octyldiglycolamide (DGA) resin. Isotope dilution measurements of Am and Pu were performed using accelerator mass spectrometry (AMS) and alpha spectrometry. For maximum adsorption Pu was stabilized in the tetra valent oxidation state in 8 M HNO3 with 0.05 M NaNO2 before loading the sample onto the resin. Am(III) was adsorbed also onto the resin from concentrated HNO3, and desorbed with 0.1 M HCl while keeping the Pu adsorbed. The on-column reduction of Pu(IV) to Pu(III) with 0.02 M TiCl3 facilitated the complete desorption of Pu. Interferences (e.g. Ca2+, Fe3+) were washed off from the resin bed with excess HNO3. Using NdF3, micro-precipitates of the separated isotopes were prepared for analysis by both AMS and alpha spectrometry. The recovery was 97.7 ± 5.3% and 95.5 ± 4.6% for 241Am and 242Pu respectively in reagents without a matrix. The recoveries of the same isotopes were 99.1 ± 6.0 and 96.8 ± 5.3% respectively in garden soil. The robustness of the method was validated using certified reference materials (IAEA 384 and IAEA 385). The measurements agree with the certified values over a range of about 1–100 Bq kg−1. The single column separation of Pu and Am saves reagents, separation time, and cost.  相似文献   

13.
The isothermal crystallization kinetics and melting behavior of poly(butylene terephthalate) (PBT) in binary blends with poly(ε-caprolactone) (PCL) was investigated as a function of PCL molecular mass by differential scanning calorimetry and optical microscopy. The components are miscible in the melt when oligomeric PCL (Mw = 1250) is blended with PBT, whereas only partial miscibility was found in mixtures with higher molecular mass (Mw = 10,000 and 50,000). The equilibrium melting point of PBT in the homopolymer and in blends with PCL was determined through a non-linear extrapolation of the Tm = f(Tc) curve. The PBT spherulitic growth rate and bulk crystallization rate were found to increase with respect to plain PBT in blends with PCL1250 and PCL10000, whereas addition of PCL50000 causes a reduction of PBT solidification rate. The crystallization induction times were determined by differential scanning calorimetry for all the mixtures through a blank subtraction procedure that allows precise estimation of the crystallization kinetics of fast crystallizing polymers. The results have been discussed on the basis of the Hoffman-Lauritzen crystallization theory and considerations on both the transport of chains towards the crystalline growth front and the energy barrier for the formation of critical nuclei in miscible and partially miscible PBT/PCL mixtures are widely debated.  相似文献   

14.
Granular cornstarch was treated with microbial glucoamylase (50 mM sodium acetate buffer at pH 5.5 at 30 °C, 150 rpm) for up to 8 h. Treated starch was recovered and evaluated for changes in granular morphology, chemical properties, thermal properties, crystallinity and impact on its biodegradability. As the enzyme treatment progressed, reducing sugars began to accumulate in the liquid culture media (total of 6% in 8 h) and the granule suffered roughly 6% weight loss within 8 h of incubation. While the granules appeared intact morphologically, numerous small pits developed throughout the surface of the granules as a result of the enzyme treatment. Even after 8 h of enzyme treatment, the pitted granules were not disrupted and remained intact. X-ray diffraction indicated no loss of crystallinity in the enzyme treated granules but rather an increase in relative crystallinity, suggesting that the enzyme preferentially catalyzed the anhydroglucose units in amorphous regions of the granule. These findings were further supported by FTIR data suggesting that granules become more resistant to enzyme attack as amorphous amylose is hydrolyzed faster than the crystalline amylopectin domains. These results also suggest that variations in the crystallinity of different types of starches have the potential to affect their rates of biodegradation. Enzyme treated starch granules exhibited resistance to biodegradation, and the degree of resistance was related to the length of enzyme treatment. Granules treated with enzyme for a total of 7 h and subjected to biodegradation in soil produced 40-50% less CO2 in a closed circuit respirometer compared to the untreated samples. Differential scanning calorimetry (DSC) thermograms showed an endothermic reaction with little change in the onset and peak temperatures indicating that glucoamylase started by degrading the starch granules from the surface.  相似文献   

15.
Poly(vinyl alcohol) (PVA) is considered to be one of the very few vinyl polymers soluble in water and susceptible to biodegradation in aqueous media by specific microorganisms, implying oxidation of the carbon backbone followed by a random endocleavage of the polymer chains. The overall process does not appear to be appreciably affected by either degree of polymerization (DPn) or degree of hydrolysis (HD) of PVA at least in the 100-1000 and 80-100% ranges, respectively.In order to assess the effect of HD on the biodegradation propensity of PVA, different PVA samples having similar DPn and noticeably different HD values were synthesized by controlled acetylation of commercial PVA (HD = 99%) and submitted to biodegradation tests in aqueous medium, mature compost and soil by using respirometric procedures. Re-acetylated PVA samples characterized by HD of between 25 and 75% underwent extensive mineralization when buried in solid media, whilst PVA (HD = 99%) showed recalcitrance to biodegradation under those conditions. An opposite trend was indeed observed in aqueous solution, thus suggesting that biodegradation is not an absolute attribute directly related to structural features of the substrate under investigation. Boundary conditions related to the framework under which the biodegradation assessment is undertaken have to be taken into account and specifically well defined.  相似文献   

16.
A new two-stage microwave-assisted digestion procedure using concentrated HNO3, HCl, HF and H3BO3 has been developed for the chemical analysis of major and trace elements in sulphide ore samples prior to inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis. In the first stage 0.2 g of the certified reference material (CRM) sample was digested with a combination of acids (HNO3, HCl, and HF) in a closed Teflon vessel and heated in the microwave to 200 °C for 30 min. After cooling, H3BO3 was added and the vessel was reheated to 170 °C for 15 min. The precision of the method was checked by comparing the results against six certified reference materials. The analytical results obtained were in good agreement with the certified values, in most cases the recoveries were in the range 95-105%. Based on at least 17 replicates of sample preparation and analysis, the precision of the method was found to be ≤5%.  相似文献   

17.
Poly(?-caprolactone) (PCL) has many favourable attributes for tissue engineering scaffold applications. A major drawback, however, is its slow degradation rate, typically greater than 3 years. In this study PCL was melt blended with a small percentage of poly(aspartic acid-co-lactide) (PAL) and the degradation behaviour was evaluated in phosphate buffer solution (PBS) at 37 °C. The addition of PAL was found to significantly enhance the degradation profile of PCL. Subsequent degradation behaviour was investigated in terms of the polymer's mechanical properties, molecular weight (Mw), mass changes and thermal characteristics. The results indicate that the addition of PAL accelerates the degradation of PCL, with 20% mass loss recorded after just 7 months in vitro for samples containing 8 wt% PAL. The corresponding pure PCL samples exhibited no mass loss over the same time period. In vitro assessment of PCL and PCL/PAL composites in tissue culture medium in the absence of cells revealed stable pH readings with time. SEM studies of cell/biomaterial interactions demonstrated biocompatibility of C3H10T1/2 cells with PCL and PCL/PAL composites at all concentrations of PAL additive.  相似文献   

18.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

19.
Sr2SbMnO6 (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li2SO4-0.365 Na2SO4 (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 °C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with ∼60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95±5 kJ mol−1. The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties.  相似文献   

20.
Miscibility of blends composed by a linear unsaturated polyester (LUP) with poly(ε-caprolactone) (PCL) of different molecular weights (Mw = 50 × 103, 18 × 103 and 2 × 103) has been studied. The blends were subjected to different thermal treatments and have been studied by FT-IR spectroscopy, differential scanning calorimetry (DSC) and scanning electronic microscopy (ESEM). FT-IR results allow proving the miscibility of the blends at temperatures above the melting temperature of neat PCL. DSC measurements confirm the existence of a crystalline phase corresponding to neat PCL. The crystallization of PCL is observed in a wide range of blends composition, being detected in all the blend compositions when the crystallization time increases. Thermograms show clearly the glass transition temperatures of samples that have been rapidly quenched from the melt. However, the change in the heat flow corresponding to the glass transition temperatures is difficult to detect in samples with high PCL crystallization degree. The analysis of the results indicates that the morphology of the amorphous phase is heterogeneous for LUP + PCL blends and changes depending on the thermal treatment. The ESEM measurements, confirm the heterogeneity of the amorphous phase. The decrease of the molecular weight of the PCL favours the miscibility of the blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号