首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The combined effect of enzymatic treatment (biobeating) and NFC addition on the mechanical and physical properties of a papermaking pulp suspension was investigated. The influence of pH, consistency of pulp and reaction time of the enzyme on the pulp strength was evaluated by measuring the breaking length of paper sheets made thereof. The results showed that the enzymatic treatment improved mechanical properties of fibres without modifying drainability. After biobeating, NFC was added to the enzyme-treated pulps. Mechanical properties were enhanced, obtaining length at break values similar to those observed in commercial printing/writing paper. Opacity remained constant, whereas porosity was gradually reduced as more amount of NFC was added. The presence of NFC also reduced drainability, although it remained at suitable levels for the papermaking industry. The results suggest that the combination of biobeating and NFC addition can be considered as an alternative to mechanical beating.  相似文献   

2.
Fibres and fabrics are often used to reinforce shape memory polymers (SMPs) to improve their mechanical strength and properties, and such composites have been widely used in engineering. However incorporation of fibres and fabrics in SMPs is often accompanied with the deterioration of thermomechanical properties and shape memory effect. The thermomechanical properties and deterioration mechanisms of a shape memory polymer composite (SMPC) under repeated mechanical stress were investigated. Up to 100% extension, the SMPCs showed good shape memory effect with excellent shape recovery ratio, recovery stress and mechanical properties; while beyond that the recovery ratio and recovery stress of the composites deteriorated rapidly due to the significant delamination and debonding of fibres and fabrics from the SMP resin and accumulation of broken fibres.  相似文献   

3.
通过UV-Vis、FTIR、DSC、以及色差、力学性能的测试表征,实时追踪分析了在紫外光老化过程中,含Pb、Sn以及Ca-Zn热稳定剂的PVC体系微观结构和宏观性能的演变过程.结果表明,在相同光老化条件下,PVC/Pb、PVC/Sn和PVC/Ca-Zn体系的微观结构变化规律基本一致,过程中主要的化学反应是,大分子吸收光能后,发生脱HCl生成共轭双键的反应、生成羰基的氧化反应、交联反应和降解反应;不同热稳定剂的作用,主要表现在对于微观结构变化的幅度和动力学过程的影响不同.相应地,3种体系的外观色差和力学性能的变化规律也相似,但色差的变化程度和速度以及老化后力学性能的保持率因所含热稳定剂的不同而不同,其中含Sn体系的颜色稳定性最好,含Pb体系的力学性能保持率最高。  相似文献   

4.
研究了氯化聚乙烯(CPE)增容PVC/POE热塑性弹性体的结构与性能,通过对比使用增容剂CPE前后体系的力学性能,确证CPE对PVC/POE体系具有良好的增容效果。用DSC,SEM对热塑性弹性体的结构特性进行了研究,采用动态硫化的方法,提高了热塑性弹性体的性能。  相似文献   

5.
The aim of this work is to study the natural ageing of rigid polyvinyl chloride (PVC) used in building and construction areas. For that purpose the PVC bars have been exposed in Algiers for 24 months in three sites where the concentrations of atmospheric pollutants (NOx, O3, hydrocarbons) are known. Samples were taken every three months. The evolution of mechanical properties was followed by tensile and hardness tests whereas the modification structure of polymer was followed by Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The results have shown a little drop in strain at break and stress at break, whereas hardness remains practically constant. IR and UV-visible analysis have shown apparition of chemical structures due to the polymer degradation (carbonyl and hydroperoxide groups and polyenes) since the first months of exposure in the three sites.  相似文献   

6.
Different chemical pre-treatments of Spartium junceum L. fibres using alkali (NaOH), nanoclay (MMT) and Citric acid (CA) with the aim of producing biodegradable composite material are discussed. As environmental requirements in processing technologies have been higher in recent years, the Polylactic acid (PLA) is used in this research as a matrix, due to its renewability, biodegradability and biocompatibility. Biocomposites are prepared by reinforcing PLA with randomly oriented, short Spartium junceum L. fibres in order to increase material strength. The effects of different pre-treatments of Spartium junceum L. fibres on the mechanical properties of final biocomposite material are examined. Fibre tenacity is studied using Vibroscop and Vibrodyn devices. Tensile strength of biocomposite material was measured on the universal electromechanical testing machine Instron 5584. The results indicate that biocomposites reinforced with fibres modified with MMT and CA show upgraded mechanical properties of the final composite material in comparison with the composite materials reinforced with referenced (nontreated) fibres. Infrared spectra of tested fibres and biocomposites were determined with Fourier transform infrared spectroscopy using Attenuated total reflection (FT-IR ATR) sampling technique and the influence of fibre modifications on the fibre/polymer interfacial bonding was investigated. The interface of Spartium/PLA composites was observed with scanning electron microscope (SEM) and it was clearly visible that biocomposites reinforced with fibres modified by MMT and CA showed better interaction of fibres and matrix.  相似文献   

7.
Flammability of recycled polypropylene (PP)/low density polyethylene (LDPE)/high density polyethylene (HDPE) ternary blends containing date palm fibres is investigated in this study. Melt blending is used for the composite preparation and the palm fibres induce good mechanical strength to the blend composites. The effect of flame retardant magnesium hydroxide, is studied through the limiting oxygen index analysis and cone calorimeter studies. Morphology of the palm fibres in presence of fire retardant reveals interesting facts of base hydrolysis. Since the polymers used are recycled ones and the fibres are obtained from the date palm leaves, the whole composite manufactured stands as low cost, less energy consuming and environmental friendly. Though the flame retardant reduced the mechanical properties, the palm fibres strengthened the whole composite thus helping to achieve the flame retardancy and mechanical properties simultaneously. Flame retardancy is correlated with the thermal degradation and thermal conductivity of the blend fibre composites as well.  相似文献   

8.
Introduction   As a structure material,a polymer has two important mechanical properties,i.e.,strength and toughing.Therefore,plastic toughening isalwaysa fundamental study on poly-mer materials.Traditionally,toughnessmodification isto make rubberasan elastomerimpactmodifier dispersed to plastic matrix which is hence toughened[1 ,2 ] .But as the toughness ofplastic is improved,the elastomerimpactmodifieralso reducesthe othermechanical propertiesof the material.Consequently,whether rigid par…  相似文献   

9.
The integration of the environmental problem in the design of industrial products leads us to incorporate vegetal fibres and recycled polymers into composite materials. The aim of this work is to study the behaviour and the environmental interest of a recycled PP/hemp fibre after several injection cycles. The mechanical and rheological behaviour of recycled PP/hemp composite was first studied by using tensile, dynamical mechanic analysis and rheological measurements. Then, to better understand the influence of the recycling, a morphology study was carried out on composites by using optical and electron microscopy. Finally, we investigated the environmental advantages of our composite thanks to a simplified environmental assessment. Our results highlighted the environmental interest of using a recycled matrix to prepare composites reinforced with vegetal fibres and the interesting properties of this material after recycling.  相似文献   

10.
聚氯乙烯/纳米水滑石复合材料的形态与力学性能   总被引:5,自引:0,他引:5  
对由原位悬浮聚合制备的聚氯乙烯(PVC)纳米水滑石复合树脂加工得到的纳米复合材料的形态和力学性能进行了研究,并与直接熔融加工得到的PVC纳米水滑石复合材料进行比较.发现由前一方法得到的PVC纳米水滑石复合材料中纳米水滑石的分散性明显优于由后一方法得到的PVC纳米水滑石复合材料,水滑石以初级粒子形式存在,分散良好,无明显团聚体;与之对应,由前一方法得到的PVC纳米水滑石复合材料的力学性能也明显优于由后一方法得到的PVC纳米水滑石复合材料,当纳米水滑石含量小于5wt%时,复合材料的杨氏摸量、拉伸强度和缺口冲击强度均随水滑石含量增加而增大;纳米水滑石的引入可显著提高复合树脂的热稳定性;PVC纳米水滑石复合材料的储能和损耗模量略大于纯PVC材料,而损耗因子和玻璃化温度变化不大.  相似文献   

11.
A dissolution-based recycling technique for acrylonitrile-butadiene-styrene copolymer (ABS) is proposed, and the effects of repeated recycling cycles are studied measuring changes in chemical structure, melt viscosity, and tensile and impact properties. Acetone as solvent, 0.25 g/ml concentration, room temperature and 40 min for dissolution have been found to be the most reliable recycling parameters. FTIR, DSC and MFI results have shown that the dissolution-based recycling itself does not degrade the ABS. However, TGA analysis suggests that during the dissolution some stabilizers are probably eliminated, and consequently degradation takes place in the following injection moulding step. Darkening of recycled ABS is attributed to the butadiene degradation, pointed out by FTIR results. Otherwise, the chemical structure of the SAN matrix has not been modified, but its molecular weight has been reduced. The modulus of elasticity is not affected even after four recycling cycles. However, yield stress and impact strength decrease after the first recycling cycle, and remain constant in the following steps.  相似文献   

12.
The micromechanism of the fatigue process in highly oriented nylon 6 fibers is discussed on the basis of changes in mechanical and structural properties during fatiguing. Experimental results show that the fatigue process can be divided into two stages. The characteristic features in the initial period are increases in breaking strength, long period, and molecular orientation, and a reduction in dye penetration. In the second period, after about 500 cycles, breaking strength and orientation decrease slightly, and the long period, permanent strain, and dye penetration increase with duration of fatiguing. It is demonstrated that the structural changes mainly occur in the amorphous regions of the fiber structure. The structural and mechanical changes in the initial period lead to the conclusion that the initial cyclic strain causes strain hardening caused by extended tie chains which do not rupture. A combination of load bearing by tie chains and sliding motion of the fibrillar elements can explain the progressive degradation of the fiber during the second stage of fatiguing.  相似文献   

13.
This study aimed to investigate the effect of resin impregnation on the interfacial shear strength (IFSS), thermogravimetric (TG) and fourier transform infrared (FT-IR) of sugar palm (Arenga pinnata) fibres. In addition, the effect of resin impregnation on the mechanical properties of sugar palm fibre reinforced unsaturated polyester (UP) composites was also studied. The fibres were impregnated with UP via vacuum resin impregnation process at a pressure of 600 mmHg for 5 min. Composites of 10, 20, 30, 40 and 50 % fibre loadings were fabricated and tested for tensile and flexural properties. It was observed that the impregnation process caused the fibres to be enclosed by UP resin and this gave a strong influence to the increase of its interfacial bonding by the increase of its IFSS from single fibre pull-out test. It was also observed with TG and FT-IR spectra that the impregnated fibre had lower moisture uptake than the control and there was no significant increase in thermal stability of the impregnated fibre. The sequence of fibre decomposition started from the evaporation of moisture, hemicelluloses, cellulose, lignin and finally ash content and the presence of these components were proven by FT-IR spectra. For the composite specimens, due to the high interfacial bonding of the impregnated fibre and the matrix, the impregnated composites showed consistently higher tensile strength, tensile modulus, elongation at break, flexural strength, flexural modulus and toughness than the control samples. It was also observed that 30 % fibre loading gave optimum properties.  相似文献   

14.
The effect of polymer-polymer interactions on the miscibility and macroscopic properties of PVC/PMMA, PVC/PS and PMMA/PS blends were studied in the entire composition range. The miscibility of the components was characterized by the Flory-Huggins interaction parameter or by quantities related to it. Thermal analysis, light transmittance measurements, and scanning electron microscopy were carried out on the blends and their mechanical properties were characterized by tensile tests. Interactions were analyzed by infrared spectroscopy and contact angle measurements. All three polymer pairs form heterogeneous blends, but the strength of molecular interactions is different in them, the highest is in PVC/PMMA system resulting in partial miscibility of the components and beneficial mechanical properties. The structure of these blends depends strongly on composition. A phase inversion can be observed between 0.5 and 0.6 PMMA content accompanied with a significant change in structure and properties. The PVC/PS and the PMMA/PS pairs are immiscible, though the results indicate the partial solubility of the components. The analysis of the surface characteristics of the components and the comparison of quantities derived from them with miscibility as well as with the macroscopic properties of blends revealed that blend properties cannot be predicted in this way, since they are affected by several factors.  相似文献   

15.
Natural fibres, such as flax and hemp, are typically chosen as reinforcing elements in composites to replace traditional glass fibres due to their high stiffness, strength and low strain to failure. Some plant fibres such as coir and celery however possess high strains to failure, which could be utilised in a composite to enhance toughness. This paper reports on the use of Raman spectroscopy to follow the molecular deformation of single fibres of coir and celery. The technique is also used to characterise the orientation of the cellulose structure within the fibres. It is shown by mechanical testing of fibres that both celery and coir possess a non-linear stress–strain curve. Coir fibres however exhibit high strain to failure, whereas celery fibres are shown to have a much lower value of this parameter, despite having a similar coiled fibrillar structure. It is shown by using polarised Raman spectroscopy, and rotating the specimens with respect to the polarisation axis of the laser and measuring the intensity of the 1095 cm−1 Raman band, that both celery and coir fibres combine both axial and transverse orientation, due to their coiled structures. This is also confirmed by birefringence measurements. By following the shift in the central position of this Raman band as a function of cyclic deformation of the fibres, it is shown that the coir fibres recover their molecular deformation, whereas the celery does not show the same level of recovery. This difference between the fibres is postulated to be due to the fact that coir possesses an interlaced fibrillar structure, which remains intact, whereas the celery sub-fibrils unravel and orient towards the fibre axis during deformation.  相似文献   

16.
Poly(vinyl alcohol)/hydroxyapatite(PVA/HA) composite hydrogel was successfully in-situ synthesized via three cycles of freezing-thawing. The composition and structure of products were investigated by X-ray diffraction( XRD), Fourier transformed infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). The influence of different preparation methods and contents of material on the mechanical properties of PVA/HA composite hydrogel was discussed through tensile and compressive tests. The template of PVA could avoid the agglomeration of HA particles, which improves the mechanical properties of the composite hydrogel effectively. The tensile strength, modulus and compressive performances of the PVA/HA composite hydrogel prepared by the in-situ synthesis method were better than those of hydrogel obtained by the simple blend metliod. In addition, the effect of the content of PVA, HA, and the pH value on tlie properties of tlie PVA/HA composite hydrogel has been discussed in detail.  相似文献   

17.
Aqueous acrylic-polyurethane (PUA) composite emulsion was prepared by soap-free seeded emulsion copolymerization. Waterborne polyurethane (WPU) was used as the seeded emulsion and functioned as surfactant. The effect of molecular weight of WPU on the heterogenic was investigated. The molecular weight of WPU was controlled by varying the NCO/OH mole ratio. The GPC results confirmed that the molecular weight of WPU presented double distribution. And the molecular weight of WPU decreased with the increasing NCO/OH mole ratio. Surface tension test indicated that the molecular weight had little influence on the surface activity of WPU. However, after emulsion copolymerization of acrylic monomers, the morphology and properties of the PUA composite were impacted markedly by the molecular weight of WPU. With an increase in the NCO/OH mole ratio, the morphology of PUA composite latex changed from core-shell structures to fish bowl structure, and the mechanical properties of PUA films changed correspondingly.  相似文献   

18.
An ionomer-type of polyurethane (PU) emulsion was prepared from toluene diisocyanate (TDI), polypropylene glycol (PPG) and dimethylol propionic acid (DMPA) following a self-emulsification process. The modified poly(vinyl chloride) (PVC) emulsion resin was obtained by in situ emulsion copolymerization using the PU as seeds in an autoclave. The effects of PU molecular weight on the mechanical properties and thermal stability of the PU/PVC materials were investigated. The composite latex particles and composite materials were determined and characterized using a laser particle size analyzer, transmission electron microscopy or scanning electron microscopy. The study results showed that the PU/PVC hybrid emulsion particles possess a core/shell structure. When the general mechanical properties of the composite materials increase, the thermal stabilities decrease a little. The tough fractures on the surface of the PU/PVC composite sample following impact are quite obvious. __________ Translated from Journal of Hebei Normal University (Natural Science Edition), 2007, 31(2): 228–232 [译自: 河北师范大学学报(自然科学版)]  相似文献   

19.
Rate of polymer degradation is very important for implantable biomaterials since controlling the degradation rate may complement the biological response and affected mechanical property requirements. In spite of numerous publications on the potential use of combinations of poly lactic acid/bioactive glass fillers for degradable bone plate, little information exists on the controlling degradation rate and its effects on the other aspects such as biomechanical compatibility, bioactivity, etc. Our previous study revealed that a composite bone plate consist of poly l-lactic acid/braided bioactive glass fibers has the initial mechanical properties near to cortical bone. In this study, degradation rate and mechanical behavior of the composite bone plate were assessed, and also degradation rate was controlled by using proper manufacturing process and improving bonding between matrix and reinforcement. Moreover, bioactivity of the composite was considered before and after controlling degradation rate, because of the important role of bioactivity and ion release in healing acceleration. Results showed that degradation process of the composite could be controlled properly. Strength of the treated composite decreased only about 5% through 2 weeks and about 35% after 8 weeks while, the strength loss for the untreated composites was about 50 and 70 percent after 2 weeks and 8 weeks of degradation respectively. Although calcium-phosphate formation on the surface of the composite was postponed in the treated samples, the bioactivity of the composite remained unchanged and bone-like apatite was formed on the composite surface which is important for the application of the composite in bone tissue environment.  相似文献   

20.
The influence of treating cotton fibres with several amines on the mechanical properties, moisture sorption ability before and after graft polymerization, and on graft yields for various water-soluble and water-insoluble vinyl monomers were analysed. As compared to water, the treatment with amines, ethylenediamine (EDA) in particular, resulted in a decrease in the crystallinity and tensile strength of the cotton fibres, and an increase in the moisture sorption. The graft yields of amine-treated cotton fibres using water-soluble monomers, acrylic acid (AA), methacrylic acid (MAA) and acrylamide (AM) were greater than those observed for water-treated cotton fibres, whereas the graft yields using water-insoluble monomers, methyl acrylate (MA), methyl methacrylate (MMA) and vinyl acetate (VA) were lower. The moisture sorption ability was improved by the graft polymerization with water-soluble monomers. The improvement was enhanced for MA and MAA by treatment with sodium hydroxide to form the corresponding sodium carboxylate derivatives. The tensile strength of EDA-treated cotton was slightly reduced by grafting, while that of the water-activated cotton yarn was barely changed. These results suggest that the graft polymerization of amine-treated cotton fibres with certain vinyl monomers increased the moisture sorption ability without resulting in increased fibre rigidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号