首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research explores the structural effect of phosphoramidates as flame retardants (FRs) for cotton cellulose. Flame retardant (FR) and thermal decomposition actions of phosphate such as triethyl phosphate (TEP), primary phosphoramidate such as diethyl phosphoramidate (DEPA) and secondary phosphoramidates such as phosphoramidic acid, N(2-hydroxy ethyl) diethylester (PAHEDE), diethyl ethyl phosphoramidate (DEEP) and diethyl 2-methoxyethylphosphoramidate (DEMEP) on cotton cellulose were investigated. Limiting oxygen index (LOI) of treated cotton cellulose showed that all phosphoramidates exhibited better flame retardant properties as compared to TEP. Secondary phosphoramidate PAHEDE had better flame retardant properties as compared to DEMEP and DEEP which indicate that flame retardancy of secondary phosphoramidates is structure related. Test performed on pyrolysis combustion flow calorimeter (PCFC) for treated cellulose showed higher reduction in heat of combustion for efficient FRs (PAHEDE, DEPA). Evolved gas analysis using thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA-FTIR) and thermogravimetric analyzer-mass spectrometer (TGA-MS) of treated cellulose showed that phosphoramidates could catalyze the dehydration and char formation of cellulose at a lower temperature. The enhanced flame retardant action of phosphoramidate may be due to the catalytic thermal decomposition of the phosphoramidate structure to produce acidic intermediates which could react with cellulose to alter its thermal decomposition.  相似文献   

2.
Methyl methacrylate (MMA) has been free radically copolymerized, both in bulk and in solution, with diethyl(methacryloyloxymethyl)phosphonate (DEMMP), to give polymers which are significantly flame retarded when compared with PMMA, as indicated by the results of limiting oxygen index (LOI) measurements, UL 94 tests, and the results of cone calorimetric experiments. The physical and mechanical properties of the copolymers are similar to those of PMMA, except that the bulk copolymers are slightly crosslinked, and are better than those of PMMA flame retarded to a similar extent by some phosphate and phosphonate additives. Examination of the some of the gaseous products of pyrolysis and combustion, and of chars produced on burning, show that flame retardation occurs in the copolymers by both a condensed-phase and a vapour-phase mechanism. The condensed-phase mechanism is shown to involve generation of phosphorus acid species followed by reaction of these with MMA units giving rise to methacrylic acid units. The methacrylic acid units subsequently form anhydride links, which probably impede depolymerization of the remaining MMA sequences, resulting in evolution of less MMA (the major fuel when MMA-based polymers burn). By undergoing decarboxylation, leading to interchain cyclisation and, eventually, to aromaticisation, the anhydride units are probably also the principal precursors to char.  相似文献   

3.
The goal of this work was the synthesis of novel flame-retarded polyurethane rigid foam with a high percentage of castor oil phosphate flame-retarded polyol (COFPL) derived from renewable castor oil. Rigid flame-retarded polyurethane foams (PUFs) filled with expandable graphite (EG) and diethyl phosphate (TEP) were fabricated by cast molding. Castor oil phosphate flame-retarded polyol was derived by glycerolysis castor oil (GCO), H2O2, diethyl phosphate and catalyst via a three-step synthesis. Mechanical property, morphological characterization, limiting oxygen index (LOI) and thermostability analysis of PUFs were assessed by universal tester, scanning electron microscopy (SEM), oxygen index testing apparatus, cone calorimeter and thermogravimetric analysis (TGA). It has been shown that although the content of P element is only about 3%, the fire retardant incorporated in the castor oil molecule chain increased thermal stability and LOI value of polyurethane foam can reach to 24.3% without any other flame retardant. An increase in flame retardant was accompanied by an increase in EG, TEP and the cooperation of the two. Polyurethane foams synthesized from castor oil phosphate flame-retarded polyol showed higher flame retardancy than that synthesized from GCO. The EG, in addition to the castor oil phosphate, provided excellent flame retardancy. This castor oil phosphate flame-retarded polyol with diethyl phosphate as plasticizer avoided foam destroy by EG, thus improving the mechanical properties. The flame retardancy determined with two different flame-retarded systems COFPL/EG and EG/COFPL/TEP flame-retarded systems revealed increased flame retardancy in polyurethane foams, indicating EG/COFPL or EG/COFPL/TEP systems have a synergistic effect as a common flame retardant in castor oil-based PUFs. This EG/COFPL PUF exhibited a large reduction of peak of heat release rate (PHRR) compared to EG/GCO PUF. The SEM results showed that the incorporation of COFPL and EG allowed the formation of a cohesive and dense char layer, which inhibited the transfer of heat and combustible gas and thus increased the thermal stability of PUF. The enhancement in flame retardancy will expand the application range of COFPL-based polyurethane foam materials.  相似文献   

4.
This paper reports decomposition/pyrolysis studies of polyurethane (PU) rigid foams containing phosphinate, phosphonate or phosphate as flame retardant in order to study the effect of phosphorus oxidation state on their gas and/or solid phase action. The flame retardants analyzed were aluminium phosphinate (IPA), dimethylpropanphosphonate (DMPP), triethylphosphate (TEP) and ammonium polyphosphate (APP), which differ in oxidation state and/or decomposition temperature. Gases evolved during TGA analyses as well as solid residues have been studied by means of MS and FTIR.The results show that phosphorus flame retardants which significantly lose weight at temperatures lower than those of neat PU foams act in the gas phase irrespective of their valency: indeed, they are completely volatilized before polymer decomposition starts and thus no interaction between flame retardant and polymer can be expected. The effect of phosphorus oxidation state becomes important when flame retardant decomposition takes place in the same temperatures range as neat polymer. In this case, it seems that at lower P oxidation state (+1) a combined gas and solid phase action takes place while at higher P oxidation state (+5) only solid phase action was observed.  相似文献   

5.
Poly(styrene-co-diethyl vinylphosphonate) copolymers were synthesized by free radical copolymerization. The ester groups of the copolymers were hydrolyzed to phosphonic acid groups, and the sodium and zinc salts ionomers were obtained by neutralization. The structure and the thermal and viscoelastic properties of the copolymers and ionomers were characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical analysis, and small-angle X-ray scattering. The phosphonate ester lowered the glass transition temperature (Tg) of polystyrene. The free acid derivatives and metal phosphonates increased Tg and produced a rubbery plateau region in the viscoelastic properties due to the formation of a physical network. The acid and salt ionomers exhibited microphase-separated morphologies and were thermorheologically complex. The phosphonic acid derivatives absorbed relatively little water, even for materials with ion-exchange capacities greater than 1.0 mEq/g, and were not conductive, which made them unsuitable for application as proton exchange membranes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3628–3641, 2004  相似文献   

6.
Flame retardancy of bisphenol A polycarbonate (PC)/poly(butylene terephthalate) (PBT) blends was improved by the addition of resorcinol bis(diphenyl phosphate) (RDP) and poly(phenylene ether) (PPO). A PC/PBT blend at 70/30 weight ratio obtained a V‐0 rating by the addition of 10 wt% RDP and 10 wt% PPO. The combination of 5 wt% methyl methacrylate‐butadiene‐styrene tercopolymer (MBS) with 3 wt% ethylene‐butylacrylate‐glycidyl methacrylate tercopolymer (PTW) causes a remarkable increase in toughness of the PC/PBT/RDP blend while maintaining a high rigidity. A detailed investigation of the flame‐retardant action of PC/PBT/RDP and PC/PBT/RDP/PPO blends was performed using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), TGA‐FTIR, temperature‐programmed pyrolysis/gas chromatography/mass spectrometry (TPPy/GC/MS), and scanning electron microscopy/energy dispersive spectrometer (SEM/EDS). The results demonstrate that RDP induces a higher char yield at ca. 450 °C and synchronously increases the thermal stability of the blend with PPO. The flame‐retardant role of RDP in the condensed phase was discerned from TGA, FTIR, and SEM/EDS of the residues. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Two phosphorus‐containing acrylate monomers were synthesized from the reaction of ethyl α‐chloromethyl acrylate and t‐butyl α‐bromomethyl acrylate with triethyl phosphite. The selective hydrolysis of the ethyl ester monomer with trimethylsilyl bromide (TMSBr) gave a phosphonic acid monomer. The attempted bulk polymerizations of the monomers at 57–60 °C with 2,2′‐azobisisobutyronitrile (AIBN) were unsuccessful; however, the monomers were copolymerized with methyl methacrylate (MMA) in bulk at 60 °C with AIBN. The resulting copolymers produced chars on burning, showing potential as flame‐retardant materials. Additionally, α‐(chloromethyl)acryloyl chloride (CMAC) was reacted with diethyl (hydroxymethyl)phosphonate to obtain a new monomer with identical ester and ether moieties. This monomer was hydrolyzed with TMSBr, homopolymerized, and copolymerized with MMA. The thermal stabilities of the copolymers increased with increasing amounts of the phosphonate monomer in the copolymers. A new route to highly reactive phosphorus‐containing acrylate monomers was developed. A new derivative of CMAC with mixed ester and ether groups was synthesized by substitution, first with diethyl (hydroxymethyl)phosphonate and then with sodium acetate. This monomer showed the highest reactivity and gave a crosslinked polymer. The incorporation of an ester group increased the rate of polymerization. The relative reactivities of the synthesized monomers in photopolymerizations were determined and compared with those of the other phosphorous‐containing acrylate monomers. Changing the monomer structure allowed control of the polymerization reactivity so that new phosphorus‐containing polymers with desirable properties could be obtained. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2207–2217, 2003  相似文献   

8.
A linear polystyrene‐isopropenyl phosphonic acid (PS‐IPPA) copolymer was newly synthesized by free radical reaction in solution with isopropenyl phosphonic acid (IPPA) and styrene. Zirconium poly(styrene‐isopropenyl phosphonate)‐phosphate acid (ZPS‐IPPA) was also synthesized. The benzene rings of ZPS‐IPPA were hydroxylated and then further reacted with Mn(salen)Cl. Thus the heterogeneous catalyst, Mn(salen) axially immobilized onto ZPS‐IPPA was synthesized. These substances were characterized by IR spectra, X‐ray diffraction (XRD), SEM, TEM, NMR, thermogravimetric analysis, and AAS. The catalyst showed good activity to epoxidation of styrene, which is close to that of the corresponding homogeneous catalyst. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This study showed that greige cotton nonwoven fabric can effectively be flame retardant by applying the phosphorus of diammonium phosphate (DAP) as low as 0.8 wt% with the addition of urea. At such a low content of phosphorus, the char length and limiting oxygen index (LOI) were continuously decreased and increased, respectively, as the concentration of urea increased. The effect of urea additive on the thermal decomposition of flame retardant greige cotton nonwoven fabric was investigated by thermogravimetry, ATR-FTIR, XRD, 1H → 13C CP/MAS NMR, and SEM. The results indicated that, upon heating, urea not only facilitated the phosphorylation reaction of DAP but also introduced carbamate groups into cellulose to decrease the degree of crystallinity prior to the decomposition of the crystalline cellulose. Compared with DAP treatment alone, the addition of urea accelerated the decomposition of glycosyl units, which resulted in a slight increase of weight loss and decrease of char yield. The char morphology observed after LOI tests indicates that urea released nonflammable gases, which blew the carboneous char layer to protect the underlying substrate.  相似文献   

10.
New phosphonate reagents were developed for the two‐carbon homologation of aldehydes to unbranched or methyl‐branched unsaturated aldehydes. The phosphonate reagents, diethyl methylformylphosphonate dimethylhydrazone and diethyl ethylformyl‐2‐phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether. This robust two‐step process worked with aliphatic, α,β‐unsaturated and aromatic aldehydes. Isolated yields for the condensation step ranged from 77% to 89%, and yields for the deprotection step ranged from 81% to 96%.  相似文献   

11.
The distribution of the temperature and the morphology of the charred material formed in the combustion of blends of poly(phenylene ether) (PPE) with high impact polystyrene (HIPS), carried out in the UL94 test, were examined. The effect of the fire retardant triphenyl phosphate is shown to be the decrease of time of burning, of temperature of the specimen and of zone involved in combustion, without apparent modification of the char structure. Hypothesis on gas and condensed phase fire retardant mechanisms are discussed.  相似文献   

12.
In order to compare their inherent flame retardancy and thermal stability, two phosphorus-containing thermotropic liquid crystalline copolyesters (P-TLCP) were synthesized by melting transesterification. Additionally based on the facts that the P-TLCP can work as a functional additive to enhance the flame retardancy and mechanical property of PET, we further studied the flame retardant mechanism. Scanning Electronic Microscope (SEM) observations show that the char from PET/P-TLCP is more compact, therefore more efficiently resists fire and heat attack than pure PET. Moreover, Fourier Transform Infrared Spectroscopy (FTIR) measurements of evolved gas, indicate that P-TLCP decomposes to produce phosphorus-containing small molecular compounds during the pyrolysis process, such that P-TLCP could play a flame retardant role in vapour phase. Furthermore, P-TLCP strongly inhibits the generation of combustible compounds in the pyrolysis of PET, which also helps to resist fire propagation.  相似文献   

13.
Styrene was radically copolymerized with a spiro-orthoester with an acrylate group (SOE-AC), and terpolymerized with SOE-AC and diethyl(methacryloyloxymethyl)phosphonate (DEMMP). This was done for several different feed ratios, to obtain polymers with spiro-orthoester moieties in the side chain. These polymers were then crosslinked with ytterbium triflate, as cationic initiator, via the double ring-opening polymerization. The thermal stability and fire retardant properties of these materials were evaluated by TGA and LOI. The DEMMP-containing polymers give materials which were significantly more flame retardant than the nonphosphorus-containing materials, as indicated by the LOI measurements. The volume changes measured upon crosslinking of the polymers were evaluated by density measurements with a gas pycnometer. In all the cases, expansion was observed. This indicates that SOE-AC is an effective monomer for crosslinkable polymers without volume changes.  相似文献   

14.
The mechanism of flame retardant (FR) action of red phosphorus in polyacrylonitrile combustion was investigated by thermogravimetry, flash-pyrolysis GC-MS, and combustion methods. Red phosphorus was found to increase the thermal stability in air of polyacrylonitrile and to induce a char residue increment on this substrate. Both these effects disappeared when pyrolysis was carried out under nitrogen flow. Flash-pyrolysis GC-MS experiments showed that red phosphorus does not alter the pyrolysis product distribution of polyacrylonitrile, which implies that there is no specific interaction between polyacrylonitrile and red phosphorus. These data also showed that polymeric red phosphorus decomposes to volatile white phosphorus (P4) during pyrolysis. These observations allow us to propose a simple model for the mechanism of FR action of red phosphorus on polyacry-lonitrile at the molecular level. Combustion data for polyacrylonitrile-red phosphorus mixtures are in agreement with the proposed mechanism of FR action.  相似文献   

15.
Two novel phosphorus‐containing Mannich‐type bases, [(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]‐amino}‐ ethylamino)‐phenyl‐methyl]‐phosphonic acid diethyl ester (PEDA) and ({2‐[2‐(2‐{[(diethoxy‐phosphoryl)‐phenyl‐methyl]– amino}‐ethylamino)‐ethylamino]‐ethylamino}‐phenyl‐methyl)‐phosphonic acid diethyl ester (PTTA) were prepared and employed as curing agents in an attempt to prepare flame retardant epoxy systems. Through a curing reaction, phosphorus was incorporated in the backbone of the epoxy polymer. The processing characteristic of these systems was studied in terms of gel time at different temperatures. Thermal and flame retardancy properties of the cured epoxy thermosets were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and flammability test. The degradation activation energy was calculated by Kissinger's model. The results showed that the gel time of the phosphorus‐containing epoxy systems was prolonged; the glass transition temperature (Tg) was increased due to the introduction of phosphorus and the initial degradation activation energy of phosphorus‐containing epoxy systems was lower than phosphorus‐free epoxy systems. High char yield (23–27 wt%) and limiting oxygen index (LOI) values of 28–30 were observed for the phosphorus‐containing epoxy thermosets, indicating their improvement in flame retardancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Homopolymerization of α-olefins (1-CnH2n, n = 6, 8, 10, 12, 16 and 18) and their copolymerization with styrene were carried out in toluene at 60 °C using diphenylzinc-ethenylbisindenylzirconium dichloride-methylaluminoxane as initiator system. Atactic polystyrene and almost isotactic poly(α-olefin)s were obtained. Copolymerization of S/α-olefin with this initiator system gave isotactic olefin-enriched copolymers. According to DSC analysis, the homopolymers P(1-C12H24), P(1-C16H32), and P(1-C18H36) as well their styrene copolymers are crystalline.  相似文献   

17.
In mixtures of polystyrene with a fire retardant chloroparaffin, the rate of volatilisation of the polymer is initially increased during the thermal dehydrochlorination of the additive. In the residue which results, the volatilisation of polystyrene occurs at a lower rate than when it is heated alone. The mechanisms of the reactions which occur in the mixture are discussed and related to the fire retardant action of the chloroparaffin.  相似文献   

18.
Novel phosphorylated cardanol molecules based on phosphonate (PO3CR) and phosphate (PO4CR) functions were synthetized. Those molecules have two main actions which are described in this article: the reduction in volatile organic compounds (VOC) and the development of flame retardant (FR) properties conferred on alkyd resins used as coatings for wood specimen. Phosphorylated cardanol compounds have been successfully grafted by covalent bonds to alkyd resins thanks to an auto-oxidative reaction. The impact of the introduction of PO3CR and PO4CR on the film properties such as drying time and flexibility has been studied and the thermal and flame retardant properties through differential scanning calorimeter, thermogravimetric analysis and pyrolysis-combustion flow calorimeter. These studies underscored an increase in the thermal stability and FR properties of the alkyd resins. In the cone calorimeter test, the lowest pHRR was obtained with 3 wt% P of phosphate-cardanol and exhibited a value of 170 KW.m−2, which represented a decrease of almost 46% compared to the POxCR-free alkyd resins. Moreover, a difference in the mode of action between phosphonate and phosphate compounds has been highlighted. The most effective coating which combined excellent FR properties and good coating properties has been obtained with 2 wt% P of phosphate-cardanol. Indeed, the film properties were closed to the POxCR-free alkyd resin and the pHRR decreased by 41% compared to the reference alkyd resin.  相似文献   

19.
Pyrolysis and fire behaviour of a phosphorus polyester (PET-P-DOPO) have been investigated. The glycol ether of the hydroquinone derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide was used as a reactive halogen-free flame retardant in PET-P-DOPO. PET-P-DOPO is proposed as an alternative to poly(butylene terephthalate) (PBT) with established halogen-free additives. It exhibits a high LOI (39.3%) and achieves V-0 classification in the UL 94 test. Three different mechanisms (flame inhibition, charring and a protection effect by the intumescent char) contribute to the flame retardancy in PET-P-DOPO and were quantified with respect to different fire risks. The fire load was reduced by 66% of the PBT characteristic. The reduction is the superposition of the relative reduction due to flame inhibition (factor 0.625) and charring (factor 0.545). The peak of heat release rate (pHRR) was reduced by 83% due to flame inhibition, charring and the protection properties of the char (factor 0.486). The strength of all three mechanisms is in the same order of magnitude. The intumescent multicellular structure enables the char to act as an efficient protection layer. PBT flame-retarded with aluminium diethylphosphinate was used as a benchmark to assess the performance of PET-P-DOPO absolutely, as well as versus the phosphorus content. PET-P-DOPO exhibits superior fire retardancy, in particular due to the additional prolongation of the time to ignition and increase in char yield. PET-P-DOPO is a promising alternative material for creating halogen-free flame-retarded polyesters.  相似文献   

20.
Rate constants for the reactions of OH radicals and NO(3) radicals with diethyl methylphosphonate [DEMP, (C(2)H(5)O)(2)P(O)CH(3)], diethyl ethylphosphonate [DEEP, (C(2)H(5)O)(2)P(O)C(2)H(5)], and triethyl phosphate [TEP, (C(2)H(5)O)(3)PO] have been measured at 296 +/- 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were as follows: DEMP, 5.78 +/- 0.24; DEEP, 6.45 +/- 0.27; and TEP, 5.44 +/- 0.20. The rate constants obtained for the NO(3) radical reactions (in units of 10(-16) cm(3) molecule(-1) s(-1)) were the following: DEMP, 3.7 +/- 1.1; DEEP, 3.4 +/- 1.4; and TEP, 2.4 +/- 1.4. For the reactions of O(3) with DEMP, DEEP, and TEP, an upper limit to the rate constant of <6 x 10(-20) cm(3) molecule(-1) s(-1) was determined for each compound. Products of the reactions of OH radicals with DEMP, DEEP, and TEP were investigated using in situ atmospheric pressure ionization mass spectrometry (API-MS) and, for the TEP reaction, gas chromatography with flame ionization detection (GC-FID) and in situ Fourier transform infrared (FT-IR) spectroscopy. The API-MS analyses show that the reactions are analogous, with formation of one major product from each reaction: C(2)H(5)OP(O)(OH)CH(3) from DEMP, C(2)H(5)OP(O)(OH)C(2)H(5) from DEEP, and (C(2)H(5)O)(2)P(O)OH from TEP. The FT-IR and GC-FID analyses showed that the major products (and their molar yields) from the TEP reaction are (C(2)H(5)O)(2)P(O)OH (65-82%, initial), CO(2) (80 +/- 10%), and HCHO (55 +/- 5%), together with lesser yields of CH(3)CHO (11 +/- 2%), CO (11 +/- 3%), CH(3)C(O)OONO(2) (8%), organic nitrates (7%), and acetates (4%). The probable reaction mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号