首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
在聚苯乙烯(PS)/聚烯烃弹性体(POE)/AlCl3共混物中引入苯乙烯(St)单体,增加了共混体系中的不饱和结构,AlCl3催化剂与St反应生成大量的初始碳正离子,这些初始碳正离子进攻POE链生成更多的大碳正离子,进而形成更多的PS-graft-POE共聚物,提高了接枝效率.进而,采用"两次挤出"技术,即先原位增容制成接枝母料,然后接枝母料再与PS和POE二次挤出,可以在一定程度上缓解组份的降解,使共混物的力学性能得到进一步的改善.  相似文献   

2.
Blends of linear low‐density polyethylene (LLDPE) with polystyrene (PS) and blends of LLDPE with high‐impact polystyrene (HIPS) were prepared through a reactive extrusion method. For increased compatibility of the two blending components, a Lewis acid catalyst, aluminum chloride (AlCl3), was adopted to initiate the Friedel–Crafts alkylation reaction between the blending components. Spectra data from Raman spectra of the LLDPE/PS/AlCl3 blends extracted with tetrahydrofuran verified that LLDPE segments were grafted to the para position of the benzene rings of PS, and this confirmed the graft structure of the Friedel–Crafts reaction between the polyolefin and PS. Because the in situ generated LLDPE‐g‐PS and LLDPE‐g‐HIPS copolymers acted as compatibilizers in the relative blending systems, the mechanical properties of the LLDPE/PS and LLDPE/HIPS blending systems were greatly improved. For example, after compatibilization, the Izod impact strength of an LLDPE/PS blend (80/20 w/w) was increased from 88.5 to 401.6 J/m, and its elongation at break increased from 370 to 790%. For an LLDPE/HIPS (60/40 w/w) blend, its Charpy impact strength was increased from 284.2 to 495.8 kJ/m2. Scanning electron microscopy micrographs showed that the size of the domains decreased from 4–5 to less than 1 μm, depending on the content of added AlCl3. The crystallization behavior of the LLDPE/PS blend was investigated with differential scanning calorimetry. Fractionated crystallization phenomena were noticed because of the reduction in the size of the LLDPE droplets. The melt‐flow rate of the blending system depended on the competition of the grafting reaction of LLDPE with PS and the degradation of the blending components. The degradation of PS only happened during the alkylation reaction between LLDPE and PS. Gel permeation chromatography showed that the alkylation reaction increased the molecular weight of the blend polymer. The low molecular weight part disappeared with reactive blending. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1837–1849, 2003  相似文献   

3.
Polystyrene (PS) and polyethylene (PE) are two major components of household plastic waste whose blends are immiscible. Recycling them together is an attractive option that requires a compatibilization process to improve the blend mechanical properties. If a PE/PS copolymer is added or formed in situ, it may act as compatibilizer. The structure and molecular properties of this copolymer are key factors to assure its effectivity as a compatibilizer. In this work, we study the graft copolymerization reaction between polystyrene and polyethylene using the catalytic system composed of AlCl3 and styrene. We develop a model of this process which considers that PE/PS grafting and PS degradation occur simultaneously. We propose a kinetic mechanism for the whole process and apply the method of moments to solve the mass balance equations. The model is able to calculate average molecular weights as well as the amount of grafted PS. It accurately describes the available experimental data, constituting a valuable tool for simulation and optimization purposes.  相似文献   

4.
By Friedel‐Crafts alkylation reaction, catalyzed by a Lewis acid of anhydrous aluminum chloride (AlCl3), binary polymer blends of polypropylene (PP)/polystyrene (PS) with volume proportion of 80/20 were in situ compatiblized and prepared in an XSS‐30 melt mixer at 210 °C. The linear viscoelastic characteristics of the blends were investigated by checking the variations of storage modulus, loss modulus, complex modulus, and complex viscosity of the in situ compatiblized blends, which were dependent on AlCl3 content. In addition, Han plots of the in situ compatiblized blends with different AlCl3 content were also used to characterize the linear viscoelastic properties of the blends. The results showed that both the dynamic rheological parameters and the Han plots were obviously influenced by the rheological properties of the matrix and slightly influenced by the rheological properties of the dispersed phase. Further investigations revealed that phase geometry contributions to the dynamic rheological parameters of the blends could be ignored in comparison with the contributions of the components and the interfacial modification, which were defined and obtained according to log‐linear‐additivity rule. The linear viscoelastic characteristics of the blends were mainly controlled by the combination of the effects of interfacial modification between phases and the rheological properties of the matrix. Storage modulus is the most sensitive dynamic rheological parameter to characterize the interfacial compatiblization effects in the in situ compatiblized binary polymer blends with rheological properties of components variable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1349–1362, 2010  相似文献   

5.
The application of Friedel‐Crafts alkylation reaction to the compatibilization of polypropylene (PP)/polystyrene (PS) blends was assessed. A PP macrocarbocation is chemically bonded to the PS benzene ring by aromatic electrophilic substitution. The graft copolymer formed at the interphase (PP‐g‐PS) showed relatively high emulsification strength, suggesting an effective behavior as in situ compatibilizer. The critical micelle concentration (CMC) was related to Friedel‐Crafts catalyst concentration. The amount of PS grafting and possible appearance of crosslinking and chain scission side reactions were also analyzed. The reaction products were characterized by a combination of size exclusion chromatography and Fourier transform infrared techniques applied after a careful solvent extraction separation. It was found, from the emulsification curve, that CMC was achieved when 0.7 wt % AlCl3 was added. This value was confirmed by scanning electron microscopy observation of phase adhesion on fractured sample surfaces. Mass balances of extracted PS showed that at least 15 wt % of the initial PS resulted grafted at the CMC condition. Chain scission reactions, in parallel with grafting, were verified to occur for PP as well as for PS. Instead, crosslinking reactions were not detected. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 452–462, 2004  相似文献   

6.
We model the effect of the catalyst AlCl3 on polystyrene (PS). Detailed experimental studies were previously carried out on the effect of AlCl3 on PS, as part of an effort to understand how to minimize the degradation of PS during the Friedel-Crafts alkylation performed to obtain a graft copolymer from immiscible blends of PS and a polyolefin (PO). In the present work three mathematical models for the catalytic degradation of PS are proposed, all of which consider that reaction starts with the elimination of a phenyl group from the PS chain, followed by either chain scission or a change in the chain structure. The models vary in the way they consider the strength of the main chain bonds, or the reactivity of modified PS chains. Kinetic parameters for each model are estimated. Although the three proposed models could be used to represent our own experimental data, one is more accurate. Experimental data from other authors are used to evaluate its capabilities. Based on the predictions of the better model, we discuss conditions to minimize PS scission, such as operating at low temperatures and AlCl3 concentrations, and using short processing times.  相似文献   

7.
The influence of photochemical aging of in situ polymerized PS/AES blends on their mechanical properties has been studied. The PS/AES blends were subjected to photochemical aging for 168 h and 720 h. Tensile properties and Izod impact resistance of aged and non-aged samples were evaluated. The mechanical properties of the PS/AES blends are influenced by the polymerization temperature and blend composition and represent a balance between the toughness of EPDM and the stiffness of SAN in the PS matrix. Even though the impact resistance and strain at break of HIPS are higher than those of the PS/AES blends, after the aging period all PS/AES blends showed higher strain at break than HIPS. PS/AES blends present higher photochemical stability than HIPS.  相似文献   

8.
采用GPC方法对共混组分的分子量、接枝率和降解度等数据进行分析, 发现AlCl3催化剂对PS/POE共混物的作用表现在原位增容和催化降解两个方面. 结合Friedel-Crafts烷基化反应的特点细化反应过程, 发现PS/POE共混物在AlCl3作用下发生接枝反应时, 有大量碳正离子出现, 而碳正离子周围的电子重排会导致分子链断裂, 从而引起共混组分出现大幅度降解. PS/POE/AlCl3共混物中原位接枝与催化降解是一对竞争性反应, 同时存在, 并相互竞争.  相似文献   

9.
刘焱龙  柯卓  尹立刚  石强  殷敬华 《应用化学》2009,26(10):1129-1133
采用新型双路易斯酸, 三甲基氯硅烷和三氯化铟,为催化剂引发傅氏烷基化反应,实现了乙烯辛烯共聚物(POE)和聚苯乙烯(PS)共混物的原位增容。红外光谱验证了接枝物的存在。用扫描电镜观察了反应共混体系和简单物理共混物的形态, 前者分散相的尺寸小于1 μm, 后者分散相的尺寸则较大, 一般为3~4 μm。原位生成的接枝物起到相容剂的作用,增容后的样品的力学性能得到较明显的提升。如:当POE /PS 为40/60 (wt%) 时, 与相同组成的物理共混的POE/PS 相比, 其悬臂梁冲击强度由1.9 kJ/m2 增加到9.7 kJ/m2, 断裂伸长率由3.4%提高到46.3%。增容后共混物的流变性能与物理共混物相比也发生了显著的变化。  相似文献   

10.
In situ polymerized PS/EPDM blends were prepared by dissolving poly(ethylene-co-propylene-co-2-ethylidene-5-norbornene) (EPDM) in styrene monomer, followed by bulk polymerization at 60 °C and 80 °C . EPDM has excellent resistance to such factors as weather, ozone and oxidation, attributed to its non-conjugated diene component, and it could be a good alternative for substituting polybutadiene-based rubbers in PS toughening. The in situ polymerized blends were characterized by dynamic mechanical analysis, thermogravimetric analysis, gel permeation chromatography, and tensile and Izod impact resistance tests. The PS/EPDM blends are immiscible and present two phases, a dispersed elastomeric phase (EPDM) in a rigid PS matrix whose phase behavior is strongly affected by the polymerization temperature. Mechanical properties of the blends are influenced by the increase in the average size of EPDM domains with the increase in the polymerization temperature and EPDM content. The blends polymerized at 60 °C containing 5 wt% of EPDM presents an increase in the impact resistance of 80% and containing 17 wt% of EPDM presents an increase in the strain at break of 170% in comparison with the value of PS. The blend polymerized at 80 °C containing 17 wt% of EPDM presents an increase in the strain at break of 480% and in impact resistance of 140% in comparison with the value of PS.  相似文献   

11.
The morphology, thermal and mechanical properties of polystyrene (PS) blends with 2.5-20 wt% of poly(vinyl chloride) (PVC) have been studied. The measurement of the glass transition temperature (Tg) from the maxima of tan δ data using dynamic mechanical thermal analysis showed that the blends were incompatible and homogenously distributed only within a limited range of PVC contents in PS. The value of the storage modulus was found to increase initially but then decreased with further addition of PVC in the matrix. Distribution of the phases in the virgin and degraded blends was also studied through scanning electron microscopy. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of blends were found higher than that of pure PS which indicated the stabilizing effects of PVC on PS. The effect varies with the heating rates and the composition of the blends and the phenomenon has been explained due to changing morphology of the blends with composition and the degradation time which affect the interfacial interaction between the degrading products from the polymer components. The kinetic parameters of the degradation process calculated from a method described by Ozawa have been reported for these blends.  相似文献   

12.
A TiCl4/AlCl3/MgCl2 (Cat-B) catalyst containing 5.2 wt.% Al was prepared by the reaction of TiCl4 with ethanol adduct of AlCl3/MgCl2 mixture. A TiCl4/MgCl2 catalyst (Cat-A) without doped AlCl3 was also prepared by the same method. Ethylene-1-hexene copolymerization catalyzed by Cat-B in the presence of hydrogen showed slightly higher efficiency and higher 1-hexene incorporation than Cat-A. Comonomer incorporation was markedly increased when the cocatalyst AlEt3 was replaced by Al(i-Bu)3. Adding Ph2Si(OMe)2 as external donor in the catalyst system caused decrease in polymerization activity and 1-hexene incorporation. Each copolymer sample was fractionated into three fractions: n-heptane insoluble fraction (fraction A), n-heptane soluble and n-hexane insoluble fraction (fraction B) and n-hexane soluble fraction (fraction C). In most cases the amount of intermediate fraction (fraction B) was smaller than the other fractions and did not increase as the total 1-hexene content increase, indicating the presence of two classes of copolymer fractions with greatly different comonomer content and clear bimodality of the copolymer composition distribution. Doping AlCl3 in the catalyst, changing cocatalyst and adding external donor mainly changed the weight ratio of fraction A to fraction C, but exerted little influences on their composition. According to the sequence distribution data of the fractions, doping AlCl3 in the catalyst resulted in slight decrease of product of reactivity ratios (r1r2) in both fraction A and fraction C.  相似文献   

13.
The present investigation deals with the mechanical, thermal, and morphological properties of binary nylon 66/maleic anhydride grafted ethylene propylene rubber (EPR‐g‐MA) blends at different dispersed phase (EPR‐g‐MA) concentrations. The effects of EPR‐g‐MA concentration and dispersed particle size on the mechanical properties of the blends were studied. Analysis of the tensile data in terms of various theoretical models revealed the variation of stress concentration effect with blend composition and the improvement of interfacial adhesion between dispersed rubber phase and nylon 66 matrix. The thermal degradation of the blends was analyzed by nonisothermal thermogravimetric analysis (TGA). It was found that the activation energy (Ea) and overall reaction order of thermal degradation decreased with increasing EPR‐g‐MA content. The scanning electron microscopic (SEM) analysis showed a significant decrease in dispersed particle size with increasing EPR‐g‐MA content, which was explained on the basis of the level of chemical interaction (in situ compatibilization) between nylon 66 and EPR‐g‐MA. The surface morphology of the nylon 66/EPR‐g‐MA blends was illustrated by the roughness of atomic force microscopy (AFM) images. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A highly efficient method was developed for nucleophilic fluorination using an alkali metal fluoride through the synergistic effect of the polymer-supported ionic liquid (PSIL) as a catalyst and tert-alcohol as an alternative reaction media. This PSIL/tert-alcohol system not only enhances the reactivity of alkali metal fluorides and reduces the formation of by-products but also allows the use of a polymer-supported catalyst protocol. As an example, the nucleophilic fluorinations of the model compound, 2-(3-bromopropoxy)naphthalene, with CsF using only tert-amyl alcohol as solvent (for 2 h reaction time), 0.5 equiv of PS[hmim][BF4] in CH3CN (for 12 h reaction time), and 0.5 equiv of PS[hmim][BF4] in tert-amyl alcohol (which is a PSIL/tert-alcohol system for the synergistic effect; for 2 h reaction time) provided 18, 40, and 84% yield, respectively. The characteristics of the nucleophilic fluorination reactions of some halo- and alkanesulfonyloxyalkane systems to the corresponding fluoroalkanes using various alkali metal fluorides are also reported.  相似文献   

15.
The thermal degradation of a series of three novel bridged polyhedral oligomeric silsesquioxanes (POSS)/polystyrene (PS) nanocomposites, at different POSS content (3%, 5% and 10%), was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres, in order to investigate the effects of this new dumbbell-shaped structure on the filler–polymer interaction and then on the thermal stability of the obtained materials. Nanocomposites were synthesized by in situ polymerization of styrene in the presence of POSS which has not polymerizable groups, aiming to obtain well dispersed POSS/PS systems. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy (SEM) and FTIR spectroscopy evidenced the presence of filler–polymer interactions. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the characteristic parameters of thermal stability, namely temperature at 5% mass loss (T5%) and the activation energy (Ea) of degradation, of the various nanocomposites were determined. The results were discussed and interpreted.  相似文献   

16.
The mechanical, thermal and biodegradable properties of poly(d,l-lactide) (PDLLA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ethylene glycol) (PEG) blends were studied. The influence of PEG on the tensile and impact strengths of the blends was investigated. The results showed that the toughness and elongation at break of the PDLLA/PHBV (70/30) blends were greatly improved by the addition of PEG, and the notched Izod impact strength increased about 400% and the elongation at break increased from 2.1% to 237.0%. The thermal and degradation properties of the blends were investigated by differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA), it was found that the thermal stability of PHBV in the presence of PDLLA was improved. The degradation test showed that the addition of PEG could notably accelerate the biodegradation of the blends in the soil at room temperature, and the mass loss is about 20% after 30 days of the storage.  相似文献   

17.
Poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends were prepared via the solution casting method at different proportions. Their thermal characteristics were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The degradability of the blends was investigated in soil suspension cultivation and in vitro degradation testing. The changes of structure and molecular weight for blends were also studied by 1H nuclear magnetic resonance spectroscopy (1H NMR), scanning electron microscopy (SEM) and gel permeation chromatography (GPC) before and after degradation. Although the PPC/PHBV blends were immiscible, the addition of PHBV could improve the thermal stability of PPC. PHBV was degraded mainly by the action of microbial enzymes in the soil suspension, which biodegraded it more rapidly than PPC in a natural environment. PPC was degraded mainly by chemical hydrolysis and random hydrolytic scission of chains in the PBS solution in vitro, and degradation of PPC was more rapid than that of PHBV in a simulated physiological environment.  相似文献   

18.
The grafting of syndiotactic polystyrene with branched oligoethene was achieved with [Ni(π‐methallyl)(Br)]2/AlCl3 as a catalyst. The molar ratio of AlCl3 to Ni(II) is important, and an efficient reaction occurs only with a large excess of AlCl3. The grafted polymers were characterized by NMR, wide‐angle X‐ray diffraction, and differential scanning calorimetry. The predominant grafts were sec‐butyl groups. No melting point was observed for highly grafted polymers, and X‐ray diffraction studies indicated that these materials were completely amorphous. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 446–451, 2001  相似文献   

19.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

20.
Poly(?-caprolactone-co-1,2-butylene carbonate) (PBCCL) was successfully synthesized via terpolymerization of carbon dioxide, 1,2-butylene oxide(BO) and ?-caprolactone (CL). A polymer-supported bimetallic complex (PBM) was used as catalyst. The influences of various reaction conditions such as reaction content, reaction time and reaction temperature on properties of terpolymers were investigated. When CL content increased, the viscosity-average molecular weights (Mv), glass transition temperature (Tg) and decomposition temperature (Td) of PBCCL improved relative to those of poly(1,2-butylene carbonate) (PBC). Prolonging the reaction time resulted in increase in Mv and Tg. As reaction temperature increased, the molar fractions of CL (fCL) increased obviously. When the reaction temperature went beyond 80 °C, the resulting copolymers tended to be crystalline. The thermal properties and degradation behaviors of PBCCL were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The apparent activation energy and thermal degradation model of PBCCL was estimated by means of Ozawa-Flynn-Wall method and Phadnis-Deshpande method, respectively. The results showed that Tg and Td of the terpolymer PBCCL were much higher than those of PBC. The thermal degradation behavior of PBCCL was evidenced by one-step thermal degradation profile. The average apparent activation energy is 77.06 kJ/mol, the thermal degradation kinetics follows the power law thermal decomposition model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号