首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer nanocomposites with carbon nanotubes as fillers have attracted more attention than any other nanomaterials. A full development of these materials requires a deep understanding of the way they behave in the use conditions. In this work, the resistance to accelerated photooxidation of syndiotactic polypropylene/multi-walled carbon nanotube (sPP/MWCNTs) films was compared to the photooxidation behaviour of unfilled polypropylene films with the same structural organization. The chemical and structural modifications resulting from photooxidation have been followed using infrared spectroscopy and diffractometric analysis. It was found that a good dispersion degree of the nanofiller, evaluated by atomic force microscopy, contributes to reduction in the rate of photooxidation and an increase in the oxidative thermal stability of the polymeric matrix. Different concomitant effects are considered to explain these results, among which morphology and structure of the nanocomposites together with the MWCNT capacity to interact with oxygen molecules making them unavailable in the first stages of photooxidation.  相似文献   

2.
Multi-walled carbon nanotubes/polypropylene composites were compounded using a twin-screw extruder. Here, nanotubes with different lengths, i.e. 1-2 μm and 5-15 μm, respectively, were applied at a constant volume content of 1%. Notched Charpy impact tests showed that toughening effects of nanotubes depended highly on testing temperatures. The impact resistance was notably enhanced at a temperature above the glass transition temperature of matrix. Longer nanotubes performed more effective in toughening compared to the shorter ones. The increment of impact resistance of nanotube-filled polypropylene was considered due to enhanced load-carrying capability and much-increased deformation of matrix. SEM fractography further revealed the toughening mechanisms in a micro-scale. The impact energy was improved via nanotube breakage and pullout, which likely led to a series of energy consuming actions. In addition, the smaller spherulite size induced by nanotubes would be favourable to the impact resistance partially.  相似文献   

3.
Poly(2,5-benzoxzole) (ABPBO)/carbon nanotube (CNT) composites were prepared via in situ polycondensation of “protonated” AB monomer, 3-amino-4-hydroxybenzoic acid hydrochloride, in a mildly acidic poly(phosphoric acid) medium. In situ generated hydrochloric acid during the dehydrochlorination process provided additional acidity to the reaction medium. The enhanced acidity was advantageous for both the purification and dispersion of CNTs. Specifically, it was evident for the purification of as-received single-walled carbon nanotube (SWCNT), which was contained a large portion of impurity (60-70 wt%). On the basis of the data obtained from elemental analysis (EA), thermogravimetric analysis (TGA), infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the resultant composites implicated that individual tube of multi-walled carbon nanotube (MWCNT) and bundles of SWCNT were homogeneously dispersed into the ABPBO matrix. After in situ polymerization in harsh temperature at 175 °C and subsequent work-up processes, CNTs were remained structurally intact in a mild reaction medium. Thus, the PPA medium is indeed viable for the preparation of composite.  相似文献   

4.
The photooxidation of a vulcanized ethylene-propylene-diene monomer (EPDM)/montmorillonite nanocomposite as well as EPDM/nanocomposite with stabilizers was studied under accelerated UV-light irradiation (λ ≥ 300 nm, 60 °C) for different times. The development of functional groups during oxidation was monitored by infrared spectroscopy. Photodegradation of the neat polymer and composites took place and the increases of absorbance in hydroxyl and carbonyl groups with irradiation times and also the decreases of the EPDM unsaturations were measured. The data indicated that the photooxidation products were not changed in the presence of the nanofiller. However, the presence of MMt was observed to dramatically enhance the rate of photooxidation of EPDM with a shortening of the oxidation induction time, leading to a decrease of the durability of the nanocomposites. On the other hand, it was observed that addition of stabilizers, either Tinuvin P or 2-mercaptobenzimidazole, was efficient in inhibiting the degradative effect of MMt.  相似文献   

5.
The paper concerns thermal properties of epoxy/nanotubes composites for aircraft application. In this work, influence of carbon nanotubes on thermal stability, thermal conductivity, and crosslinking density of epoxy matrix was determined. Three kinds of nanotubes were used: non-modified with 1- and 1.5-μm length, and 1-μm length modified with amino groups. Scanning electron microscopy observations were done for examining dispersion of nanotubes in the epoxy matrix. Glass transition temperature (T g) was readout from differential scanning calorimetry. From dynamic mechanical analysis, crosslinking density was calculated for epoxy and its composites. Also, thermogravimetric analysis was done to determine influence of nanotubes addition on thermal stability and decomposition process of composites. Activation energy was calculated from TGA curves by Flynn–Wall–Ozawa method. Thermal diffusivity was also measured. SEM images proved the uniform dispersion of carbon nanotubes without any agglomerates. It was found that nanotubes modified with amino groups lead to the increase of epoxy matrix crosslinking density. The significant increase in T g was also observed. On the other hand, addition of carbon nanotubes leads to the decrease of thermal stability of polymer due to the increase of thermal diffusivity.  相似文献   

6.
The influence of a non-halogenated intumescent fire retardant on the photooxidation of polypropylene is reported. The photooxidation of polypropylene stabilised with a phenolic antioxidant and two redox antioxidants (HALS), without and with the flame retardant has been studied. The chemical modifications resulting from UV-light exposure with wavelengths above 300 nm in the presence of oxygen were followed by IR and UV-visible spectroscopies. Special attention was given to the influence of each component on the rate of oxidation of the polymeric matrix. The photooxidation of the fire-retarded polymer can be described by two independent phenomena: the photooxidation of the intumescent agent and the photooxidation of the polymer. The results obtained offer new insight in the formulation of stabilised fire-retarded PP for outdoors applications.  相似文献   

7.
Multi-walled carbon nanotubes synthesized by means of arc evaporation of graphite were used to prepare composites with a heat-resistant binder based on cyanoether. To increase the homogeneity of distribution of nanotubes in the polymer matrix, the carbon material was cleaned of graphite particles and amorphous carbon with a potassium permanganate solution in concentrated sulfuric acid. By means of X-ray photoelectron spectroscopy, it was shown that the proposed purification procedure leads to the grafting of oxygen-containing groups to the surface of carbon nanotubes. By means of differential scanning calorimetry, it was revealed that the oxide overcoat on the nanotube surface exerts an influence on the character of binder polymerization. The mechanical properties of a carbon-reinforced plastic with different nanotubes contents were measured. It was shown that the admixture of 0.25–0.50% carbon nanotubes improves the mechanical characteristics of carbon-reinforced plastics by 10–20%.  相似文献   

8.
Thin polyetherimide (PEI) films containing 0.1–3 wt.% multi-walled carbon nanotubes (MWCNTs), have been prepared from three types of MWCNTs, namely pristine, oxidized and polymerized ionic liquid (PIL) functionalized CNTs. Oxidized and PIL functionalized CNTs (CNT–PIL) showed better dispersion in the matrix compared to pristine CNTs. For CNT–PIL, alignment of CNTs has been observed in the matrix. Regardless of the type of CNTs, their incorporation led to an increased thermal stability of the polymer matrix. Dynamic mechanical analysis showed that storage modulus increased by up to 25% (3 wt.% CNT–PIL) and an increase in the height of the damping peaks (tan δ). The addition of CNTs did not have any significant influence on the tensile properties and Tg of the polymer, and the electrical conductivity did not decrease in the case of modified CNTs.  相似文献   

9.
The electrical conductivity of polymer/multi-walled carbon nanotubes (MWCNTs) composites in a powder and in a hot-pressed compacted state, prepared by mechanical mixing, was studied. The semicrystalline ultrahigh molecular weight polyethylene (UHMWPE) was used as a polymer matrix. The data clearly evidence the presence of a percolation threshold φc at a very small volume fraction of the MWCNTs φ in a polymer matrix, φc ≈ 0.0004-0.0007. The ultralow percolation threshold in UHMWPE/MWCNTs thermoplastic composites was explained by high aspect ratio of the nanotubes and their segregated distribution inside the polymer matrix. The method of composite preparation effects the values of percolation threshold concentration φc and critical exponent t. A noticeable positive temperature coefficient of resistivity (PTC effect) was observed in the region of temperatures higher than melting point. It was explained by influence of thermal expansion of the polymer matrix and independence from the melting process that is a result of specific structure of conductive phase.  相似文献   

10.
We are proposing for the first time the use of a Nafion/multi-walled carbon nanotubes dispersion deposited on glassy carbon electrodes (GCE) as a new platform for developing enzymatic biosensors based on the self-assembling of a chitosan derivative and different oxidases. The electrodes are obtained by deposition of a layer of Nafion/multi-wall carbon nanotubes dispersion on glassy carbon electrodes, followed by the adsorption of a chitosan derivative as polycation and glucose oxidase, l-aminoacid oxidase or polyphenol oxidase, as polyanions and biorecognition elements. The optimum configuration for glucose biosensors has allowed a highly sensitive (sensitivity = (0.28 ± 0.02) μA mM−1, r = 0.997), fast (4 s in reaching the maximum response), and highly selective (0% interference of ascorbic acid and uric acid at maximum physiological levels) glucose quantification at 0.700 V with detection and quantification limits of 0.035 and 0.107 mM, respectively. The repetitivity for 10 measurements was 5.5%, while the reproducibility was 8.4% for eight electrodes. The potentiality of the new platform was clearly demonstrated by using the carbon nanotubes/Nafion layer as a platform for the self-assembling of l-aminoacid oxidase and polyphenol oxidase. Therefore, the platform we are proposing here, that combines the advantages of nanostructured materials with those of the layer-by-layer self-assembling of polyelectrolytes, opens the doors to new and exciting possibilities for the development of enzymatic and affinity biosensors using different transdution modes.  相似文献   

11.
Multiwall carbon nanotube‐filled elastomers are prepared by solution blending using a sonication process. It is shown that the processing conditions have a strong effect on the composite properties especially on electrical properties, which are very sensitive to nanotube dispersion within the elastomeric matrix. The percolation threshold is seen to be shifted to a lower nanotube content than that previously reported. With regard to the unfilled elastomer, large increases in the elastic and tensile moduli are obtained with the nanotube loading, thus highlighting the potential of this type of particles as reinforcing fillers for elastomeric matrices. Raman spectroscopy under strain has been used to evaluate the strength of the polymer–filler interface. Weak interfacial interactions are deduced, but the debundling of the nanotubes and the orientational effects of the polymeric chains are observed when the composite is submitted to a uniaxial deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH2) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G′) values of suspensions containing MWCNTs and MWCNT-NH2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G″) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E′) and the loss modulus (E″) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (Tg) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties.  相似文献   

13.
The hierarchical structure of semidilute suspensions of single-walled carbon nanotubes in polymeric matrices, studied by the use of ultrasmall and small angle neutron scattering, indicates an aggregate size that is independent on both nanotube concentration and polymer matrix and a mesh within the floc that becomes slightly denser with increasing nanotube concentration. The number of clusters grows linearly with concentration of nanotubes. These structural parameters suggest that the interactions between the flocs dictate the concentration-dependent elastic strength scaling of the network, with the absolute values of the specific elastic strength being inversely related to the percolation threshold.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10−9–4.5 × 10−7 M (R2 = 0.9987) and 5.0 × 10−8–3.0 × 10−6 M (R2 = 0.9999), respectively. The detection limits of 1.0 × 10−9 M and 1.5 × 10−8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1.3% for PAR; 100.8% with an RSD of 1.8% for DA). The proposed method was successfully applied to the determination of PAR and DA in pharmaceuticals.  相似文献   

15.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   

16.
Potential profiles were obtained for the chemisorption of hydrogen on (n, n) and (n, 0) carbon nanotubes. The energy barriers and rate constants for hydrogen molecule sorption on and desorption from various nanotubes were determined. The constants for sorption and desorption were used to calculate sorption-desorption equilibrium constants. Sorption on outside nanotube surfaces was found to be more favorable energetically than sorption on inside surfaces.  相似文献   

17.
This paper describes the voltammetric determination of cocaine in presence of three different interferences that could be found in street samples using disposable sensors. The electrochemical analysis of this alkaloid can be affected by the presence of codeine, paracetamol or caffeine, whose oxidation peaks may overlap and lead to false positives. This work describes two different solutions to this problem. On one hand, the modification of disposable carbon sensors with carbon nanotubes allows the voltammetric quantification of cocaine by using ordinary least squares regressions in the concentration range from 10 to 155 μmol L−1, with a reproducibility of 5.6% (RSD, n = 7. On the other hand, partial least squares regressions are used for the resolution of the overlapped voltammetric signals when using screen-printed carbon electrodes without any modification. Both procedures have been successfully applied to the evaluation of the purity of cocaine street samples.  相似文献   

18.
Xiao F  Zhao F  Li J  Yan R  Yu J  Zeng B 《Analytica chimica acta》2007,596(1):79-85
A novel composite film modified glassy carbon electrode has been fabricated and characterized by scanning electron microscope (SEM) and voltammetry. The composite film comprises of single-wall carbon nanotube (SWNT), gold nanoparticle (GNP) and ionic liquid (i.e. 1-octyl-3-methylimidazolium hexafluorophosphate), thus has the characteristics of them. The resulting electrode shows good stability, high accumulation efficiency and strong promotion to electron transfer. On it, chloramphenicol can produce a sensitive cathodic peak at −0.66 V (versus SCE) in pH 7.0 phosphate buffer solutions. Parameters influencing the voltammetric response of chloramphenicol are optimized, which include the composition of the film and the operation conditions. Under the optimized conditions, the peak current is linear to chloramphenicol concentration in the range of 1.0 × 10−8-6.0 × 10−6 M, and the detection limit is estimated to be 5.0 × 10−9 M after an accumulation for 150 s on open circuit. The electrode is applied to the determination of chloramphenicol in milk samples, and the recoveries for the standards added are 97.0% and 100.3%. In addition, the electrochemical reaction of chloramphenicol and the effect of single-wall carbon nanotube, gold nanoparticle and ionic liquid are discussed.  相似文献   

19.
Purification of single-walled carbon nanotubes using conjugated polymers to selectively disperse either semiconducting or metallic nanotubes is effective and has received significant attention. However, the interaction between the conjugated polymer and the nanotube surface is very strong, making it difficult to remove the adsorbed polymer. Here, we report a poly(carbazole-co-terephthalate) polymer that is not only selective for semiconducting carbon nanotubes but can also be largely removed from the nanotube surface via irradiation with UV light. Irradiation of the polymer-nanotube dispersion causes degradation of ester linkages in the polymer backbone, effectively cutting the polymer into fragments that no longer bind strongly to the nanotube surface. Characterization of the electronic nature of the samples was carried out via the combination of absorption, Raman, and fluorescence spectroscopy. In addition, thermogravimetric analysis allowed determination of the amount of polymer left on the nanotube surface after irradiation and indicated that a large proportion of the polymer is removed. The reported methodology opens new possibilities for purification of semiconducting single-walled carbon nanotubes and their isolation from the polymeric dispersant.  相似文献   

20.
We have studied the effect of impurity on electronic properties of single-walled carbon nanotubes using Density Functional Theory. Electronic band structures and density of states of (4, 4) and (7, 0) carbon nanotubes in the presence of different amount of B and N impurities were calculated. It was found that these impurities have significant effect on the conductivity of carbon nanotubes. The metallic (4, 4) nanotube remains to be metallic after doping with B and N. The electronic properties of small gap semiconducting (7, 0) tube can extensively change in the presence of impurity. Our results indicate that B-doped and N-doped (7, 0) carbon nanotubes can be p-type and n-type semiconductors, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号