首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method for producing unsupported nickel catalyst that can be used to synthesize multi-wall carbon nanotubes (MWNT) has been developed. The yield of purified MWNTs is about 1.8 gmwnt/(gcat×h).  相似文献   

2.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

3.
A two-stage reaction process was used to convert polypropylene (PP) into multi-walled carbon nanotubes (MWCNTs) and hydrogen-rich gas. The proposed process consisted of two stages: catalytic pyrolysis of PP over HZSM-5 zeolite in a screw kiln reactor and the subsequent catalytic decomposition of pyrolysis gases over a nickel catalysts in a moving-bed reactor for producing MWCNTs and hydrogen. The resultant gas mainly consisted of hydrogen and methane. SEM and TEM images revealed that carbon products in the moving-bed reactor were in the form of MWCNTs. XRD and TGA characterization indicated that high decomposition temperature resulted in the formation of more highly crystalline nanotubes. The influence of pyrolysis temperature (550-750 °C) and decomposition temperature (500-800 °C) on the performances of the two-stage reaction system were investigated. The MWCNT yield and hydrogen concentration increased with an increase in the decomposition temperature and reached a maximum at 700 °C. With increasing pyrolysis temperature the yield of pyrolysis gas increased while the liquid yield decreased. The yield of MWCNTs in the moving-bed reactor was determined by both the quantity and quality of the pyrolysis gas.  相似文献   

4.
Multiwalled carbon nanotubes were synthesized catalytically from ethylene in the presence of water vapor at transition metals of the iron subgroup. The structure of the obtained nanotubes was studied by transmission electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy. It was shown that the highest yields of carbon nanotubes with diameters between 20 and 40 nm, lengths of more than 1 μm, and average diameter of 0.92 nm for the innermost tube were obtained at a nickel catalyst with a water vapor concentration of 0.32%. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 42, No. 4, pp. 227–230, July–August, 2006.  相似文献   

5.
An innovative process for a mass production of multi-wall carbon nanotubes (MWCNTs) by means of pyrolysis of virgin or recycled polyolefins is described. The technique uses solid-gas fluidised bed reactors, continuously operated under conditions which allow high heating rates of the polymers, high heat and material exchange coefficients and a reliable control of residence times in the reactor. The obtained MWCNTs have been characterized by TGA, SEM and TEM microscopy as well as X-ray diffractometry and Raman spectroscopy. The results demonstrate that the proposed process allows the production of MWCNTs compatible with most of the already known applications, in large quantities and at low cost. This makes extremely wider the field of possible applications of these nanostructured materials.  相似文献   

6.
The hyperbranched polyester (BoltornTM H20) was modified by maleic anhydride and then polystyrene (H20-MAh-PSt) to form amphiphilic micelles in water. The single-wall and multi-wall carbon nanotubes (SWCNTs and MWCNTs, respectively) were encapsulated in the formed micelles through non-covalent interactions. The formed structures were confirmed by FTIR, NMR, GPC, and XPS analysis. The dispersion and aggregation behaviors were observed by TEM and UV-vis and Raman spectroscopic analysis. The results showed that the dispersion performance of the obtained micelle-encapsulated carbon nanotubes in water was greatly improved compared to the pure carbon nanotubes. From the TEM observation, the individual SWCNT structure and the uniform polymer coating around the surface of SWCNT were seen after crosslinking. The Raman spectroscopic measurements also demonstrated that for the crosslinked samples, no effect occurred associated with concentration-dependent carbon nanotube aggregation.  相似文献   

7.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

8.
Carbon nanospheres with diameters between 100 and 400 nm have been successfully synthesized via low-power laser-assisted pyrolysis of anthracene in a nitrogen atmosphere. The developed facile route yields homogeneous nanoparticles and requires no supplementary carbon feedstock or catalyst. The sharp thermal gradient afforded by the laser results in two kinds of carbon products that differ in crystallinity and mean particle size. Our detailed findings point to the carbon nanospheres being comprised of small-unclosed aromatic layers that are connected together by simple organic linkers. C-H bonds in the anthracene molecules are partially broken by the laser beam energy, and as the newly created large radicals aggregate, carbon nanospheres are formed.  相似文献   

9.
Since the discovery of carbon nanotubes (CNT), transmission electron microscopy (TEM) has been the most important tool in their investigation. It is possible to use electron irradiation in a TEM to construct a single-walled carbon nanotube (SWCNT) from an amorphous carbon film. Here we show that such a synthesis method creates a large number of carbon ad-atoms, which after some critical amount of radiation act to restore the system by reconstructing the carbon film. The behavior of the ad-atoms can be controlled by adjusting the current density in the microscope, suggesting that carbon nanomaterials can be tailored by electron irradiation.  相似文献   

10.
Surface properties of fluorinated single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWCNTs) were fluorinated at several different temperatures. The change of atomic and electronic structures of fluorinated SWCNTs was investigated using X-ray photoelectron spectroscopy (XPS), electrical resistivity measurements and transmission electron microscopy (TEM). The amount of doped fluorine increases with increasing doping temperature, and the fluorine atoms are covalently attached to the side-wall of the SWCNTs. From Raman spectra and HRTEM study, the strong fluorination on the SWCNTs leads to the breaking of carbon–carbon bonds and the disintegration of tube structure. Several intermediate phases of fluorinated SWCNTs are observed during e-beam irradiation in HRTEM.  相似文献   

11.
Structural evolution of WOx species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the WO bond was observed at 962 cm−1 in the dried sample, which vanished between 300 and 700 °C, and reappear again after annealing at 800 °C, along with a broad band centered at 935 cm−1, attributed to the v1 vibration of WO in tetrahedral coordination. At 900 and 1000 °C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm−1, corresponding to the symmetric and asymmetric vibration of WO bonds in Na2WO4 and Na2W2O7 phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 °C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 °C. At 1000 °C, anatase phase partially converted into rutile. After annealing at 1000 °C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO2 phase.  相似文献   

12.
Electrochemical polymerization of N-vinyl carbazole (VK) on carbon nanotube (CN) films was studied by cyclic voltammetry in LiClO4/acetonitrile solutions. Cyclic voltammograms recorded on a blank Pt electrode were compared with those obtained when single or multi-walled CN films were deposited on the Pt electrode; in the latter case, a down-shift of the VK reduction peak potential was observed. Functionalization of CNs with poly(N-vinyl carbazole) (PVK) was invoked by Raman scattering and UV-VIS-NIR spectroscopic studies. The influence of sweep rate on the electrochemical properties of the PVK/CN nanocomposite and the performance of supercapacitors constructed using PVK-functionalized single-walled carbon nanotube electrodes were also evaluated.  相似文献   

13.
We review recent experimental studies on single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy (TENOM). High-resolution optical and topographic imaging with sub 15 nm spatial resolution is shown to provide novel insights into the spectroscopic properties of these nanoscale materials. In the case of semiconducting nanotubes, the simultaneous observation of Raman scattering and photoluminescence (PL) is possible, enabling a direct correlation between vibrational and electronic properties on the nanoscale. So far, applications of TENOM have focused on the spectroscopy of localized phonon modes, local band energy renormalizations induced by charge carrier doping, the environmental sensitivity of nanotube PL, and inter-nanotube energy transfer. At the end of this review we discuss the remaining limitations and challenges in this field. Figure Tip-enhanced Raman scattering and photoluminescence spectroscopy with sub 15 nm spatial resolution provides novel insights into the electronic and vibronic properties of single-walled carbon nanotubes.  相似文献   

14.
Raman spectral shifts of single‐wall carbon nanotubes embedded in polymer systems were used to measure transitions in polymers. Glass‐transition temperatures and secondary transitions were observed, and Raman spectroscopic data were compared with dynamic mechanical tests for a thermosetting and a thermoplastic polymer. The data confirm that the Raman spectral response of carbon nanotubes embedded in polymers is sensitive to polymer transitions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1492–1495, 2001  相似文献   

15.
Responsive aligned carbon nanotubes   总被引:4,自引:0,他引:4  
  相似文献   

16.
Carbon nanotubes are synthesized by catalytic pyrolysis method with a kind of new type catalyst--nickel-zinc-alumina catalyst prepared from Feitknecht compound. Tubular carbon nanotubes, bamboo-shaped carbon naotubes, herringbone carbon nanotubues and branched carbon nanotubes are all found formed at moderate temperature. It is important for the formation of quasi-liquid state of the metal nanoparticles at the tip of carbon naotubes during the growth of carbon nanotubes to lead to different kinds of carbon nanotubes. It is likely that the addition of zinc make the activity of nickel catalyst after calcinations and reduction changed strangely.  相似文献   

17.
The highly defective carbon nanotubes (CNTs) were prepared using a heat-treatment technique and their photocatalytic ability was reported for the first time. The results showed that the highly defective CNTs had the photocatalytic ability in the range of visible light. The results also indicated that the electrical properties of CNTs were dependent not only on the diameter and helicity but also on the defect number of tubes. The defects of CNTs might be produced from vacancies, local lattice reordering and intertube reorientation during the course of the desorption of oxygen atoms, which could initiate defect states in the band gap. Absorption of visible light led to the formation of electron/hole pairs and hence caused photocatalytic oxidation. Consequently, the highly defective CNTs having the photocatalytic ability would be promising as a new photocatalytic material in the visible light.  相似文献   

18.
19.
Single-walled carbon nanotubes (SWCNTs) were treated with sulfuric acid at 300 °C to synthesize sulfonated SWCNTs (s-SWCNTs), which were characterized by electron microscopy, infrared, Raman and X-ray photoelectron spectroscopy, and thermo analysis. Compared with activated carbon, more sulfonic acid groups can be introduced onto the surfaces of SWCNTs. The high degree (∼20 wt%) of surface sulfonation led to hydrophilic sidewalls that allows the SWCNTs to be uniformly dispersed in water and organic solvents. The high surface acidity of s-SWCNTs was demonstrated by NH3 temperature-programmed desorption technique and tested by an acetic acid esterification reaction catalyzed by s-SWCNTs. The results show that the water-dispersive s-SWCNTs are an excellent solid acid catalyst and demonstrate the potential of SWCNTs in catalysis applications.  相似文献   

20.
Raman spectroscopy is a powerful technique that is used to characterize or observe alterations in the structure or properties of carbon nanotubes and its composites. This method can provide information about electronic changes or quantify them. We used Raman spectroscopy to study the chemical and electronic changes in a composite formed by titanium dioxide nanoparticles and single-walled carbon nanotubes. This composite was characterized by scanning electron microscopy to investigate the morphology and by thermogravimetric analyses to assess the thermal stability of the isolated carbon nanotubes as compared with the nanotubes by titanium dioxide nanoparticles. The Raman results showed that the modification of the nanotubes with the TiO2 nanoparticles generates a new material with different structure of the nanotubes, resulting in a decrease in defects. The charge transfer from the TiO2 nanoparticles to the nanotubes alters the electronic properties of both moieties in the hybrid material. The interaction between the nanotubes and nanoparticles decreases the CC bound order of the nanotubes and decreases their thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号