首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed a series of new C10 dipeptide stationary phases via a simple and effective synthetic method. The preparation of the new phases involves the synthesis of silanes and the surface modification of silica. Chromatographic evaluations of these columns were performed using the Engelhardt, Tanaka, and Neue test mixtures. The applicability of these new stationary phases was also evaluated using a series of diagnostic probes including acids, bases or neutral compounds and several generic applications. These new C10 dipeptide stationary phases showed excellent hydrolytic stability over a wide pH range. Like other existing amide-embedded columns, these new stationary phases exhibit higher retention for polar and hydrophilic compounds and different selectivity as compared to conventional C18 columns. These new phases are compatible with 100% aqueous mobile phases, and also provide high column efficiency and good peak shapes for both acidic and basic compounds.  相似文献   

2.
The protein ribonuclease A (RNase A) represents a good model protein for studying reversible conformational refolding during gradient elution. Work is described utilizing RNase A under gradient conditions to evaluate several different reversed-phase materials. Columns (10 cm x 4.6 mm I.D.) were packed with Partisil C18, Vydac C18, Nucleosil C4, Nucleosil C18 and an adamantyl-modified Partisil silica. Measurements of the apparent first-order rate constant of refolding, as a function of temperature, are presented and compared for each stationary phase. Comparisons of peak shapes as functions of flow-rate and temperature are also discussed.  相似文献   

3.
A novel monolithic silica column that has a polar‐embedded amide‐secondary amine group linking with C16 functionality for RP‐CEC is described. The amide‐secondary aminealkyloxysilane was synthesized by the reaction of 3‐(2‐aminoethylamino) propyltrimethoxysilane with hexadecanoyl chloride. Then, the silylant agent was bonded to the silica monolith matrix to produce hexadecanamide‐secondary amine bonded silica (HDAIS) monolithic column. The electrochromatographic performance of HDAIS monolithic column for the separation of neutral, basic and polar solutes was studied, which was compared to that using the hexadecyl bonded silica monolithic column. The HDAIS monolithic column displayed reduced hydrophobic retention characteristics in the separation of five hydrophobic n‐alkylbenzenes and four polar phenols when compared to the hexadecyl bonded silica monolithic column. A very much reduced silanol activity of HDAIS monolithic column was observed in the separation of test basic mixture including four aromatic amines, atenolol and metoprolol with 10 mM borate buffer (pH 7.5) containing 30% v/v ACN as the mobile phase. The comparison results indicate good performance for both polar and basic mixtures on HDAIS monolithic column in RP‐CEC, and also show promising results for further applications.  相似文献   

4.
The availability of a variety of stable organic stationary phases for columns has been a key factor in the development of HPLC as a major scientific tool. This paper explores the history and rationale used in the development of some important stationary phases and attempts to identify some of the strengths and limitations of these materials. Some of the author's experiences in stationary phase development illustrate approaches leading to present-day columns that exhibit a broad range of selectivity coupled with a high degree of reproducibility. Suggestions also are made for additional stationary phases that may be needed to complete column selectivity potential for HPLC separations.  相似文献   

5.
The preparation of stationary phases for HPLC using polymers deposited on silica usually includes an immobilization step involving cross-linking by free radicals induced by ionizing radiation or by other radical initiators. The present paper reports changes which occur at ambient temperature in the character of poly(methyloctylsiloxane) deposited on porous silica particles as a function of the time interval between particle loading and column packing. Column performance and retention factors increase with time and these changes are attributed to rearrangement (self-assembly) which result in "self-immobilization" of the polymer molecules on the silica surface.  相似文献   

6.
This paper focuses on the classification or differentiation of RP-HPLC columns based on measured chromatographic properties. A chemometric study has been conducted on a published data set consisting of 85 RP-HPLC columns and on a data set consisting of 47 self-tested columns. Principal component analysis enables determination of the number of parameters necessary for a rational differentiation. The results show that reducing the number of parameters for such differentiation still allows classification of the columns just as a higher number did. It is shown that three test parameters produce a classification similar to that obtained with five parameters.  相似文献   

7.
A study on the retention of PAHs on three Propyl-phenyl stationary phases was conducted, assessing absolute retention, selectivity, retention correlation and thermodynamic behaviour. The chromatographic retention data revealed that each of the three Propyl-phenyl columns exhibited differences in absolute retention, however, comparison of the compensation temperatures derived from enthalpy-entropy compensation plots showed that the underlying processes responsible for the retention on these columns were the same.  相似文献   

8.
In this paper, we present a combination of a key-solute test based on retention and separation factors of large probe solutes (carotenoid pigments) and a quantitative structure-retention relationship analysis based on the retention factors of small probe solutes (aromatic compounds), both performed in supercritical fluid chromatography, to investigate the different chromatographic behaviour of octadecylsiloxane-bonded stationary phases of all sorts: classical, protected against silanophilic interactions or not, containing polar groups (endcapping groups or embedded groups). The results indicate that the two approaches chosen (carotenoid test and solvation parameter model) are complementary and provide precise information on the chromatographic behaviour of ODS phases. The applicability of the classification to the selection of stationary phases is evidenced with some examples of separations.  相似文献   

9.
10.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.  相似文献   

11.
At present, in high-performance liquid chromatography (HPLC) for the majority of analyses, reversed-phase liquid chromatography (RPLC) is the separation mode of choice. Faster method development procedures using aggressive eluents under elevated temperature conditions, the need for improved selectivities, efficiencies and resolution, the reduction of solvent consumption and also the decrease of analysis times require reversed-phase (RP) columns of high chemical and thermal stability. Until now, the majority of columns for RPLC separations are manufactured from silica substrates. Silica has many favorable properties making this material nearly ideal as a support for RP columns. However, its solubility, that increases considerably in eluents of pH above +/-7, is a drawback preventing its widespread use over the entire pH range. In addition, also the thermal stability of silica is limited. Recently, however, substantial progress has been made in the synthesis of RPLC silica-based stationary phases showing satisfactory thermal and chemical stability under many different experimental conditions. Also, new substrates mainly based on other inorganic substrates like, e.g. alumina and zirconia have been developed now as a starting material for the preparation of RPLC stationary phases of improved chemical and thermal stability. In addition, for the same reasons, many efforts have also been made to synthesize polymer and also polymer-coated phases. These latter phases, more particularly those based on zirconia, but also polymer phases show a high degree of chemical and thermal stability compared to silica counterparts. In this paper, an overview will be given of the state-of-the-art of the thermal and chemical stability of the different available stationary phases for RPLC.  相似文献   

12.
Three n-octadecylphosphonic acid-modified magnesia-zirconia reversed stationary phases (C18PZM) are prepared via the strong Lewis base interactions between organophosphonate and magnesia-zirconia composite. And two of them are end-capped by using trimethylchlorosilane as end-capping agent in different procedures. Stability studies at extreme high pH conditions (pH 9-12) show that both the non-endcapped and endcapped columns are quite stable at pH 12 mobile phase. The reversed-phase liquid chromatographic behavior of three C18PZM stationary phases are comparatively investigated in detail using a variety of basic compounds as probes. The retention of basic compounds on the three phases is studied over a wide range of pHs. And the possible retention mechanisms of basic compounds on the three stationary phases are discussed. The results show that the basic solutes retain by a hydrophobic and cation-exchange interaction mixed mechanism on three stationary phases when they are operated in eluents at pH values near to the pKa of the Brönsted conjugate acid form of the analyte, suggesting that inherent zirconol groups on ZM are not expected to interact with bases via cation-exchange interaction at lower pH. Nonetheless, the non-endcapped phase differs markedly from the edncapped ones in retention and selectivity of basic solutes using eluents at pH 4.1, implying a complex retention mechanism at this pH. The cation-exchange sites under such conditions are more likely due to the adsorbed Lewis base anionic buffer constituents (acetate) on accessible ZM surface sites than the chemisorbed phosphonate. Although the three phases exhibit very similar chromatographic behavior with eluents at pH 10.1, and show in general satisfactory separation of basic compounds and alkaloids studied, the performance for a specific analyte, however, differs largely from column to column.  相似文献   

13.
Takeuchi  T.  Hu  R.  Miwa  T. 《Chromatographia》1994,39(9-10):597-601
Chromatographia - The retention behavior of aromatic hydrocarbons on anion-exchangers modified with alkylsulfate or alkanesulfonate has been examined by column liquid chromatography. Several...  相似文献   

14.
Summary Reversed-phase liquid chromatographic retention characteristics for the sixteen acyclic C1−C5 N-alkylbenzamide congeners were measured on various branched and linear, alkyl bonded hydrocarbon stationary phases. Retention factors, k′, were determined in acetonitrile-water mobile phase compositions on ethyl, n-octyl, n-dodecyl, n-octadecyl, 1-ethyladamantyl, 4-butyloctyl, and 2,4,4-trimethylpentyl stationary phases. Statistical analysis of the two main effects investigated — type of stationary phase and percentage of organic modifier (acetonitrile) in the mobile phase — described greater than ninety percent of the variability in the data for most of the comparisons. Selectivity effects due to variation in the mobile phase dominated the results.  相似文献   

15.
This paper describes the characterisation of reversed-phase liquid chromatography (RPLC) columns using thermodynamic measurements. Retention versus 1/T data were used to construct Van't Hoff plots. The slope of these plots indicates the standard enthalpy of transfer of the analyte from the mobile to the stationary phase. The standard entropy can be calculated from the intercept. Van't Hoff plots were linear for the investigated RPLC columns, meaning that for basic analytes over the temperature range studied no changes in the retention mechanism occurred. Enthalpies and entropies of transfer of basic analytes from the mobile to the stationary phase revealed information about the types of interaction of protonated and neutral compounds with the stationary phases. However, a clear view using the present set of basic compounds on how these thermodynamic data may explain the observed substantial differences in peak symmetry cannot be given. It is considered that addition of N,N-dimethyloctylamine (DMOA) to the eluent will results in a dynamically coating of the stationary phase. Addition of DMOA to the eluent resulted for protonated basic compounds in a reduction of both enthalpy and entropy. In practice, with DMOA in the eluent symmetrical peaks were obtained. It is assumed that this is due to blocking residual silanols and/or ion exclusion effects.  相似文献   

16.
Summary This review is intended to summarize current knowledge on chemically bonded stationary phases. Their preparation and effect on chromatographic processes in GC and HPLC are described and the complex separation mechanism on these phases is discussed.  相似文献   

17.
The separation of C60 and C70 fullerenes on four different polysiloxane stationary phases was examined. It was determined that polar solvents can be used as mobile phases effectively for the separation of fullerene molecules. Unlike previously published work, a polymeric octadecyl siloxane (ODS) stationary phase provided higher separation factors for C70/C60 than did monomeric ODS stationary phases or phenyl substituted stationary phases. For example, for a methanol-diethyl ether (50:50, v/v) mobile phase and C60, k' approximately 5.0 separation factors, alpha = 3.3, were achieved with polymeric ODS compared to alpha = 2.2, with a monomeric ODS stationary phase. A linear solvation energy relationship (LSER) was used to model the importance of solvent interactions and stationary phase interaction to solute retention.  相似文献   

18.
19.
The measurement of acetonitrile and methanol adsorption was carried out on stationary phases with specific functionalities. The results were compared with the adsorption of those solvents on alkyl-modified adsorbents. This comparison allows us to describe the effect of polar groups on the adsorption of the organic modifiers. Our results clearly demonstrate how the functional groups modify the chromatographic properties of the homogeneous hydrophobic adsorbents.  相似文献   

20.
介绍了含极性基团硅质高效液相色谱固定相的研究进展,对反相固定相的合成、极性基团作用机理和色谱性质方面作了评述,对手性分离固定相和高效离子色谱固定相方面的进展也作了简单综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号