首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Present investigation deals with neutron activation analysis of gold in some varieties of geological samples related to auriferous quartz veins. A few plant specimens of the area were also analyzed. The gold contents in the rock samples as determined by the destructive way of analysis vary in the range 10−5 to 10−7%. In case of plant samples, however, the non-destructive method of analysis of the plant ashes was followed and the concentration of gold was found to be of the order of 10−5%. In plants, besides gold, some associated elements, such as La, Ce, Sm, Lu, Zr, Hf, Se, W, As and Sb were also identified.  相似文献   

2.
A procedure for the instrumental neutron activation analysis of micro-ingots of alloys containing In, Sb, Au, Ga, Ni, Sn and Bi is proposed. The non-destructive analysis of the irradiated samples is performed by γ-spectrometry techniques including one-crystal scintillation detectors, dual-crystal sum-coincidence scintillation detectors and Ge(Li) semiconductor detectors. As a result, the cumbersome operations of radiochemical separation can be eliminated. The sensitivity of quantitative determinations using scintillation detectors in alloys of the above composition is 10−10 g for indium, gold, antimony and gallium and 10−6 g for nickel and tin. The use of semiconductor detectors yields sensitivities of 10−10 g for indium and gold and 10−9 g for gallium and antimony.  相似文献   

3.
The difficulties of determining gold in rocks and ores are due to two causes: low gold concentrations in rocks (Clark 1 to 4·10−7%), and non-uniform distribution of gold in ores. A method is proposed which is based on neutron activation of the lead alloy obtained by cupel melting in the procedure of determining gold by cupel assay. Samples of 50 to 100 g are used for cupel melting. Such large samples guarantee their representativeness. Discs of 2 to 3 g are cut from the lead alloy block and activated in a neutron flux of 1011 to 1013 n·cm−2 sec−1. The gold content is determined from the photopeak of198Au using a standard for comparison. The sensitivity of the method is 0.02 g/metric ton, its accuracy at a gold content in the order of 1.0 g/metric ton is 10% relative. The method is distinguished by the fact that it is fast and requires little labour.  相似文献   

4.
Methodology for diffusion coefficient determination was applied on sandstone samples, using conservative non sorbing tracer. The results proved that methodology, through-diffusion cell design and GoldSim diffusion module can be used for sandstone samples in order to determine important migration parameters, necessary for transport model input. However, rock heterogeneity factor has to be taken into account in any case as it can potentially change rock properties, even within centimeter scale. Effective diffusion coefficient D e for rock samples was determined. The values fell into the range of 1.0–6.17 × 10−10 m2 s−1. Discrepancies in measured and simulated porosity were observed. Statistical analyses revealed that values of diffusion coefficient D e were in close interrelation to primary mineral (quartz) and cement forming minerals (kaolinite and organic matter).  相似文献   

5.
An amperometric sensor for the determination of indole-3-acetic acid (IAA) based on the CeCl3-DHP film modified gold electrode was developed. CeCl3 was dissolved into water in the presence of dihexadecyl hydrogen phosphate (DHP). The IAA sensor was prepared via evaporating solvent of the CeCl3-DHP dispersion on the gold electrode surface. The amperometric response of IAA on the CeCl3-DHP film modified gold electrode was investigated. The experimental results indicate that the passivation of the electrode due to the adsorption of the oxidation product of IAA decreases significantly at the CeCl3-DHP film modified gold electrode, in contrast to that at the bare and the DHP modified gold electrode. The experimental parameters were optimized and an electrochemical method for the determination of IAA was established. The oxidation peak current is linearly with the concentration of IAA from 1 × 10−7 to 2 × 10−5 mol l−1 and the detection limit is 3 × 10−8 mol l−1. The relative standard deviation of eight measurements is 3.2% for 5 × 10−7 mol l−1 IAA. The IAA in plant leaves were extracted and determined by the IAA sensor.  相似文献   

6.
The applicability of fast and thermal neutron activation analyses for the determination of gold in rock samples has been studied. Using a Ge/Li/ detector limit of 0.45 mg g−1 was obtained for a fast neutron flux of 8.107 n cm−2.s−1. With a thermal neutron flux of 6.105 n cm−2.s−1 and the same detector a value of 35 μg g−1 was obtained. Using a NaI/Tl/ crystal a sensitivity of 14 μg g−1 was attained at the same thermal flux. This work was supported in part by the Hungarian Academy of Sciences.  相似文献   

7.
A procedure is developed for determining all platinum-group metals (PGM) and gold (10−7 to 10−4%). It includes the autoclave digestion of samples with the transfer of metals into a hydrochloric acid medium without losing osmium and ruthenium, group 10- to 20-fold extraction preconcentration of precious metals with the removal of matrix interfering elements to a factor of 105–106, and the analysis of the group back extract of PGM and gold by ICP AES. A method is proposed for the quantitative back extraction of all PGM and gold from a group extract in two steps of consecutively washing the extract with ammonia solutions and thiourea. The procedure is tested on seven GSO samples and technological objects. It is shown that ICP MS can be used for the analysis of group back extracts of PGM and gold.  相似文献   

8.
A collimated neutron beam capable of providing a thermal neutron flux of 4.75·107 n·cm−2·sec−1 has been used to analyze alloy samples of 1–5 g during relatively short irradiation times of 30 min by the use of neutron capture gamma-ray spectrometry. The analyses were performed by using a mathematical treatment that relates the count ratio of every constituent present in the matrix with the concentration and thus it requires no standards. The technique was applied to the analysis of steel and gold alloy samples. Errors ranged from 0.8%–10%.  相似文献   

9.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

10.
The fabrication and electrochemical characteristics of a penicillamine (PCA) self-assembled monolayer modified gold electrode were investigated. The electrode can enhance the electrochemical response of uric acid (UA), and the electrochemical reaction of UA on the PCA electrode has been studied by cyclic voltammetry and differential pulse voltammetry. Some electrochemical parameters, such as diffusion coefficient, standard rate constant, electron transfer coefficient and proton transfer number have been determined for the electrochemical behavior on the PCA self-assembled monolayer electrode. The electrode reaction of UA is an irreversible process, which is controlled by the diffusion of UA with two electrons and two protons transfer at the PCA/Au electrode. In phosphate buffer (pH 5.0), the peak current is proportional to the concentration of UA in the range of 6.0 × 10−5–7.0 × 10−4 mol L−1 and 2.0 × 10−5–7.0 × 10−4 mol L−1 for the cyclic voltammetry and differential pulse voltammetry methods with the detection limits of 5.0 × 10−6 and 3.0 × 10−6 mol L−1, respectively. The method can be applied to determine UA concentration in real samples.  相似文献   

11.
There is an increasing need to assess the harmful effects of heavy-metal-ion pollution on the environment. The ability to detect and measure toxic contaminants on site using simple, cost effective, and field-portable sensors is an important aspect of environmental protection and facilitating rapid decision making. A screen-printed gold sensor in a three-electrode configuration has been developed for analysis of lead(II) by square-wave stripping voltammetry (SWSV). The working electrode was fabricated with gold ink deposited by use of thick-film technology. Conditions affecting the lead stripping response were characterised and optimized. Experimental data indicated that chloride ions are important in lead deposition and subsequent analysis with this type of sensor. A linear concentration range of 10–50 μg L−1 and 25–300 μg L−1 with detection limits of 2 μg L−1 and 5.8 μg L−1 were obtained for lead(II) for measurement times of four and two minutes, respectively. The electrodes can be reused up to 20 times after cleaning with 0.5 mol L−1 sulfuric acid. Interference of other metals with the response to lead were also examined to optimize the sensor response for analysis of environmental samples. The analytical utility of the sensor was demonstrated by applying the system to a variety of wastewater and soil sample extracts from polluted sites. The results are sufficient evidence of the feasibility of using these screen-printed gold electrodes for the determination of lead(II) in wastewater and soil extracts. For comparison purposes a mercury-film electrode and ICP–MS were used for validation.  相似文献   

12.
Arsenic(III) was preconcentrated in a flow-through electrochemical cell on a gold coated porous carbon electrode. On stripping, arsenic was eluted with diluted nitric acid and determined off-line by GF AAS. The deposition and stripping steps were optimized. The limit of detection and limit of quantification were found to be 1.9 μg L1 and 6.4 μg L−1, respectively. The repeatability and reproducibility were found to be 5.3 % and 9.3 %, respectively. Total arsenic was determined after a microwave assisted chemical reduction of As(V) to As(III) making the procedure suitable for speciation analysis. The method was applied in analysis of water samples.  相似文献   

13.
 A differential pulse voltammetric method for the determination of nitrate has been described, which is applicable to the analysis of natural water samples with nitrate levels greater than 2.8 × 10−6 M. A reduction peak for the nitrate ions at a freshly copper plated glassy carbon electrode was observed at about −0.50 V vs Ag ∣AgCl∣KClsatd electrode in a solution of 2.0 × 10−2 M Cu2+, 0.5 M H2SO4 and 1.0 × 10−3 M KCl and exploited for analytical purposes. The working linear range was established by regression analysis and found to extend from 2.8 ×10−6 M to 8.0 × 10−5 M. The proposed method was applied for the determination of nitrate in natural waters. The detection limit of the method was 2.8 × 10−6 M and the sensitivity was 0.9683 A·L/mol. The possible interferences by some ions such as phosphate, nitrite and some halides were determined and found to lead to shifts of the peak position and increasing the peak heights. Received March 15, 1999. Revision July 9, 1999.  相似文献   

14.
A simple and sensitive cloud point extraction method has been developed for the preconcentration of ultra-trace amounts of gold as a prior step to its determination by electrothermal atomic absorption spectrometry. It is based on the extraction of gold in hydrochloric acid medium using the non-ionic surfactant polyethyleneglycolmono-p-nonylphenylether (PONPE 7.5) without adding a chelating agent. The preconcentration of a 50 mL sample solution was thus enhanced by a factor of 200. The resulting calibration graph was linear in the range of 10–200 ng L−1 with a correlation coefficient of 0.9993. The limit of detection (3s) obtained under optimal conditions was 2.0 ng L−1. The relative standard deviation for 10 replicate determinations at a 100 ng L−1 Au level was 3.6%. The method was applied to the ultra-trace determination of gold in water and copper samples.  相似文献   

15.
This paper presents a high specific, sensitive electrochemical biosensor for recognition of protein such as thrombin based on aptamers and nano particles. Two different aptamers were chosen to construct a sandwich manner for detecting thrombin. Aptamer I was immobilized on nano magnetic particle for capturing thrombin, and aptamer II labled with nano gold was used for detection. The electrical current generated from gold after the formation of the complex of magnetic particle, thrombin and nano gold, and then an electrochemical cell designed by ourselves was used for separating, gathering, and electrochemical detecting. Through magnetic separation, high specific and sensitive detection of the target protein, thrombin, was achieved. Linear response was observed over the range 5.6×10-12―1.12×10-9 mol/L, with a detection limit of 1.42×10-12 mol/L. The presence of other protein as BSA did not affect the detection, which indicates that high selective recognition of thrombin can be achieved in complex biological samples such as human plasma.  相似文献   

16.
A polyclonal antibody against ochratoxin A (OTA) was produced from rabbits immunized with the OTA–BSA conjugate. A competitive direct enzyme-linked immunosorbent assay (cdELISA) and a membrane-base colloidal gold immunoassay in flow-through format were developed for the rapid detection of OTA in various food matrices. In the cdELISA, the concentration causing 50% inhibition was 0.07 ng mL−1, and the effects of different chemical conditions (ionic strength, pH value, and organic solvent) were studied. The sensitivity of the assay was higher than those previously reported. A simple, rapid, and efficient extraction method was developed and 74–110% recoveries of spiked samples were obtained. Fifty percent methanol extracts of some food samples such as barley, wheat, oat, corn, rice, and raisins could be analyzed directly by immunoassay after dilution in PBS; grape juice and beer samples could be analyzed directly after dilution with PBS; for coffee samples, a more complex method was used to remove the matrix effect effectively. Membrane-based colloidal gold immunoassays had a visual detection limit of 1.0 ng mL−1 for OTA with a detection time of less than 10 min. For the validation of the cdELISA and membrane-based colloidal gold immunoassay, samples were analyzed by high-performance liquid chromatography. The correlation between data obtained using the microwell assay and HPLC was good (R 2 = 0.984). The developed immunoassay methods are suitable for the rapid quantitative or qualitative determination of OTA in food samples.  相似文献   

17.
A mercaptoacetic acid (MAA)-modified cadmium sulfide (CdS) nanoparticle was synthesized in aqueous solution and used as an oligonucleotide label for the electrochemical detection of nopaline synthase (NOS) terminator gene sequence. The carboxyl groups on the surface of the CdS nanoparticle can be easily covalently linked with NH2-modified NOS oligonucleotide probe sequences. The target ssDNA sequence was fixed onto the electrode surface by covalently linking to a mercaptoethanol self-assembled gold electrode, and the DNA hybridization of target ssDNA with probe ssDNA was accomplished on the electrode surface. The CdS nanoparticles anchored on the hybrids were dissolved in the solution by the oxidation with HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method. The detection results can be used for monitoring the hybridization, and the NOS target sequence was satisfactorily detected in the approximate range from 8.0 × 10−12 to 4.0 × 10−9 mol L−1 with a detection limit of 2.75 × 10−12 mol L−1 (3σ). The established method extended the nanoparticle-labeled electrochemical DNA analysis to genetically modified organisms (GMOs) specific sequence samples with higher sensitivity and selectivity.  相似文献   

18.
We describe a method for gold analysis in kidney and liver. The technique is simpler than other methods in that it does not require ashing or acid digestion of the sample. The tissue is dried, placed into a polyethylene vial and diluted with a 2 ml sodium chloride solution. Gold concentration is determined by neutron activation analysis. Samples are irradiated for two hours at a thermal neutron flux of 1012n·cm−2·s−1 and are then allowed to decay for 3–4 days before counting. The detection limit (20 ng Au/ml) and precision (±6.1%) permits the accurate analysis of gold in these tissues. This technique could aid in a re-examination of gold metabolism.  相似文献   

19.
A method has been worked out of multi-elemental instrumental neutron-activation analysis INAA of small weights some mg of monomineral fractions of sulfide minerals pyrites, galenites, chalcopyrites, arsenopyrites, bornites, chalcosines and quartzes. The samples were irradiated in a nuclear reactor under a flux of 1.3·1013 n·cm−2·s−1. For measuring the gamma radiation of the exposed samples Ge(Li) gamma-spectrometers with semiconductor detectors were used. Determined in sulfide monofractions were the elements: Co, Sc, Ag, Se, Sb, Cr, Fe, Zr; rare-earth elements: Ce, Sm, Eu and others at content levels of 10−1−10−4%. In quartzes they were: Mn, Na, Sb, Cr, Sc, Fe, Co at content levels of 10−5−10−7% and Au to n×10−9%. A special method has been worked out for the determination of In in sulfides with the irradiation of samples in a cadmium screen. An example is cited of using the method for studying some peculiar features of the genetics of copper pyrite deposits. The data on the distribution of admixture elements in sulfide monofractions produced in this work made it possible to conclude that the oreformation in the deposits has a stage-by-stage character.  相似文献   

20.
The electrochemical behavior of epinephrine (EP) at a mercaptoacetic acid (MAA) self-assembled monolayer modified gold electrode was studied. The MAA/Au electrode is demonstrated to promote the electrochemical response of epinephrine by cyclic voltammetry. The possible reaction mechanism is also discussed. The diffusion coefficient D of EP is 6.85 × 10−6 cm2 s−1. In 0.1 mol L−1 phosphate buffer (pH 7.20), a sensitive oxidation peak was observed at 0.177 V, and the peak current is proportional to the concentration of EP in the range of 1.0 × 10−5–2.0 × 10−4 mol L−1 and 1.0 × 10−7–1.0 × 10−6 mol L−1. The detection limit is 5 × 10−8 mol L−1. The modified electrode is highly stable and can be applied to the determination of EP in practical injection samples. The method is simple, quick, sensitive and accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号