首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A most popular model in the family of two-dimensional uniformly-frustratedXY models is the antiferromagnetic model on a triangular lattice [AFXY(t) model]. Its ground state is both continuously and twofold discretely degenerated. Different phase transitions possible in such systems are investigated. Relevant topological excitations are analyzed and a new class of such (vortices with a fractional number of circulation quanta) is discovered. Their role in determining the properties of the system proves itself essential. The characteristics of phase transitions related to breaking of discrete and continuous symmetries change. The phase diagram of the generalized AFXY(t) model is constructed. The results obtained are rederived in the representation of the Coulomb gas with half-integer charges, equivalent to the AFXY(t) model with the Berezinskii-Villain interaction.  相似文献   

2.
S N Behera  Avinash Khare 《Pramana》1980,15(3):245-269
The classical φ6-field theory in (1+1) dimensions, is considered as a model for the first order structural phase transitions. The equation of motion is solved exactly; and the presence of domain wall (kink) solutions at and below the transition point, in addition to the usual phonon-like oscillatory solutions, is demonstrated. The domain wall solutions are shown to be stable, and their mass and energies are calculated. Above the transition point there exists exotic unstable kink-like solutions which takes the particle from one hill top to the other of the potential. The partition function of the system is calculated exactly using the functional integral method together with the transfer matrix techniques which necessitates the determination of the eigenvalues of a Schrödinger-like equation. Thus the exact free energy is evaluated which in the low temperature limit has a phonon part and a contribution coming from the domain wall excitations. It was shown that this domain wall free energy differs from that calculated by the use of the domain wall phenomenology proposed by Krumhansl and Schrieffer. The exact solutions of the Schrödinger-like equation are also used to evaluate the displacement-displacement, intensity-intensity correlation functions and the probability distribution function. These results are compared with those obtained from the phenomenology as well as the φ4-field theory. A qualitative picture of the central peak observed in structural phase transitions is proposed.  相似文献   

3.
Electron fractionalization is intimately related to topology. In one-dimensional systems, fractionally charged states exist at domain walls between degenerate vacua. In two-dimensional systems, fractionalization exists in quantum Hall fluids, where time-reversal symmetry is broken by a large external magnetic field. Recently, there has been a tremendous effort in the search for examples of fractionalization in two-dimensional systems with time-reversal symmetry. In this Letter, we show that fractionally charged topological excitations exist on graphenelike structures, where quasiparticles are described by two flavors of Dirac fermions and time-reversal symmetry is respected. The topological zero modes are mathematically similar to fractional vortices in p-wave superconductors. They correspond to a twist in the phase in the mass of the Dirac fermions, akin to cosmic strings in particle physics.  相似文献   

4.
We discuss the zero field superconducting phase transition in a finite system of magnetically coupled superconducting layers. Transverse screening is modified by the presence of other layers resulting in topological excitations with fractional flux. Vortex stacks trapping a full flux and present at any finite temperature undergo a dissociation transition which corresponds to the depairing of fractional-flux vortices in individual layers. We propose an experiment with a bilayer system allowing us to identify the dissociation of bound vortex molecules.  相似文献   

5.
Abstract

The phenomenological theory of superconductors with a many-component order parameter (OP) is developed. On the basis of a generalized Ginzburg-Landau functional, equations for a two-component-OP superconductor are derived. It is shown that such a superconductor is specified by three length dimensionality parameters—penetration depth λ, correlation length ζ, and width d of the boundary between two superconducting-phase domains. With λ ? d ? ζ, the equations for the OP of a superconductor in a magnetic field can be explored analytically. The transition from the superconducting to the mixed phase may occur not only by the formation of ordinary Abrikosov vortices, but also owing to vortices that have two cores, each transferring a half-integral flux quantum. The total flux transferred by a vortex certainly constitutes an integral quantum. The cores of such a dimer are interconnected by two domain walls, which exercise confinement within the dimer. The distance between the cores in the dimer is of the order of d. Within a domain wall that separates two superconducting-phase domains, a dimer may fall apart into two vortices with a half-integral flux quantum.

For many-component-OP superconductors in a magnetic field, vortex structures of a more complicated nature than a dimer may occur. An individual core may transfer a fractional flux quantum, but the structure as a whole transfers an integral flux quantum. Confinement of individual cores occurs owing to a complicated system of domain walls determined by the topological charges of these vortices.

Under certain conditions, on attaining field H c1, vortices may arise first in the domain walls, carrying a fractional flux quantum, and then within the superconducting domains.  相似文献   

6.
A new “bond-algebraic” approach to duality transformations provides a very powerful technique to analyze elementary excitations in the classical two-dimensional XY and p-clock models. By combining duality and Peierls arguments, we establish the existence of non-Abelian symmetries, the phase structure, and transitions of these models, unveil the nature of their topological excitations, and explicitly show that a continuous U(1) symmetry emerges when p?5. This latter symmetry is associated with the appearance of discrete vortices and Berezinskii-Kosterlitz-Thouless-type transitions. We derive a correlation inequality to prove that the intermediate phase, appearing for p?5, is critical (massless) with decaying power-law correlations.  相似文献   

7.
The structural transitions of the perovskite KMnF3 are studied with an energy-dispersive X-ray diffractometer. It is found that the 83 K transition is of first order, though the transition related to the condensation of a M3-soft phonon mode is considerably affected by crystallographic domain-walls occurring below the 186 K transition. The latter transition is observed at 88.0 K (first-order), and 92.0 K (second-order) in different single crystals, respectively. The difference of the transition temperature and the transition order is interpreted in terms of inner strains appeared in the domain walls.  相似文献   

8.
On a superconducting bi-layer with thickness much smaller than the penetration depth, λ, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.  相似文献   

9.
We consider the critical behavior of a two-dimensional competing axial Ising model including interactions up to third nearest neighbors in one direction. On the basis of a low-temperature analysis relating the transfer matrix of this model with the Hamiltonian of theS = 1/2XXZ chain, it is shown that the usual square root singularity dominating commensurate-incommensurate phase transitions of two-dimensional systems merges into a continuously infinite transition for certain relations among the coupling parameters. The conjectured equivalence between the maximum eigenstate of the transfer matrix associated with this model and the ground state of theXXZ chain is tested numerically for lattice widths up to 18 sites.  相似文献   

10.
We use the self-consistent harmonic approximation (SCHA) to study the two-dimensional classical Heisenberg anisotropic (easy-plane) ferromagnetic model including nearest- and next-nearest neighbor exchange interactions. For temperatures much lower than the Kosterlitz-Thouless phase transition temperature T KT, spin waves must be the most relevant excitations in the system and the SCHA must account for its behavior. However, for temperatures near T KT, we should expect vortex pairs to be quite important. The effect of these vortex excitations on the phase transition temperature is included in our theory as a renormalization of the exchange interactions. Then, combining the SCHA theory to the renormalization effect due to vortex pairs, we calculate the dependence of T KT as a function of the easy-plane anisotropies and exchange interactions. Received 3 April 2001 and Received in final form 20 September 2001  相似文献   

11.
The unbinding of vortex-antivortex pairs for the classical two-dimensional XY model in a magnetic field is studied. A single such pair is connected by a string of overturned spins, leading to linear confinement. We show that this system supports two phase transitions, one in which closed strings proliferate, and a second in which vortices unbind. The transitions are shown to be dual to one another, and are remarkably continuous. Possible consequences for a variety of systems are discussed.  相似文献   

12.
We define a class of lattice models for two-dimensional topological phases with boundary such that both the bulk and the boundary excitations are gapped. The bulk part is constructed using a unitary tensor category C{\mathcal C} as in the Levin-Wen model, whereas the boundary is associated with a module category over C{\mathcal C} . We also consider domain walls (or defect lines) between different bulk phases. A domain wall is transparent to bulk excitations if the corresponding unitary tensor categories are Morita equivalent. Defects of higher codimension will also be studied. In summary, we give a dictionary between physical ingredients of lattice models and tensor-categorical notions.  相似文献   

13.
We present a theoretical investigation of elementary excitations in anisotropic antiferromagneticS=1 chains using the concept of domain walls in string (hidden) order. Domain walls are classified by the internal spin projectionS dw z . We calculate energies and string correlation 0 functions of low lying excited states of the domain wall type in the Haldane phase and compare the results to those of numerical computations. The boundaries of the Haldane phase are determined from the instability of these excitations with respect to the ground state. The interaction between two domain walls is found to be proportional to the productS dw z , S dw z 2, it is effectively repulsive 0140 for equal spin projections.  相似文献   

14.
This paper is devoted to the study of the influence of metal ion isomorphous substitution on the ferroelastic-ferroelectric phase transition and dispersion caused by the motion of domain walls in dimethylammonium metal sulfate hexahydrate DMAAl1?xCrxS ferroelectric crystals (x = 0, 0.065, 0.2). It is shown that such a substitution significantly changes the phase transition temperature and parameters of the dielectric dispersion. These changes are explained in terms of interaction between the metal-hydrate complexes and DMA groups that carry the dipole moment and due to this they are responsible for the phase transitions and motion of the domain walls.  相似文献   

15.
This paper discusses the kinetics of phase transitions to superconductivity with a multicomponent order parameter in zero external field. It is shown that as it approaches equilibrium the superconductor passes through an intermediate vortex-like state containing domain walls, single-quantum, and multiquantum axially nonsymmetric vortices and antivortices. The energy and other parameters of the domain walls are derived. Rigid superconducting bubbles are discussed and criteria are established for their local stability. Zh. éksp. Teor. Fiz. 112, 1351–1373 (October 1997)  相似文献   

16.
《Physics letters. A》2020,384(23):126570
A low-temperature intervening metallic regime arising in the two-dimensional superconductor-insulator transition challenges our understanding of electronic fluids. Here we develop a gauge theory revealing that this emergent anomalous metal is a bosonic topological insulator where bulk transport is suppressed by mutual statistics interactions between out-of-condensate Cooper pairs and vortices and the longitudinal conductivity is mediated by symmetry-protected gapless edge modes. We explore the magnetic-field-driven superconductor-insulator transition in a niobium titanium nitride device and find marked signatures of a bosonic topological insulator behavior of the intervening regime with the saturating resistance. The observed superconductor-anomalous metal and insulator-anomalous metal dual phase transitions exhibit quantum Berezinskii-Kosterlitz-Thouless criticality in accord with the gauge theory.  相似文献   

17.
R.L. Stamps 《Surface science》2007,601(24):5721-5725
Recent theoretical results are highlighted that illustrate some of the interesting phenomena associated with magnetic domain boundary walls. Two problems will be discussed: dynamics associated with domain wall propagation, and effects related to spin transport through domain walls. For the first problem, an example of wall interaction and motion through a random potential will be discussed with reference to the general problem of roughening transitions. Images of domain dynamics in thin films of ion irradiated Co reveal a de-roughening transition associated with long range magnetostatic interactions between pairs of domain walls. A scaling theory of this transition is described in which a curious type of dynamic hysteresis can occur. For the second problem, results from calculations of ballistic charge and spin transport through domain boundary walls are discussed in terms of an effective circuit model.  相似文献   

18.
19.
Spontaneous phase transitions in ferrite garnet films have been studied. It has been shown that, with variations in the temperature, domain walls undergo phase transitions which cause spontaneous phase transitions in the lattice of cylindrical magnetic domains. The phase transition in a domain wall causes a spin-reorientation phase transition over the whole sample near the magnetic compensation point. The character of the phase transition in the domain wall determines the mechanism of the spin-reorientation phase transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号