首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
激波与物面边界层的干扰涉及可压缩流动的稳定性、转捩、分离等问题,直接影响到飞行器的阻力、表面热防护和飞行性能等工程技术问题。首先总结了前人对于激波与边界层的干扰所做的工作,之后重点研究和对比分析了超声速与跨声速流动中,正激波、斜激波以及头部激波对于飞行器层流和湍流边界层的干扰影响。激波强度的不同对边界层干扰作用不同,在强干扰情况下将会引起边界层分离和翼型失速。  相似文献   

2.
邓学蓥 《力学进展》1989,19(1):5-15
分离流问题的研究在当前流体力学中占有十分重要的地位。它不仅具有重要的理论意义并且具有广泛的应用价值。本文着重评述三维分离流中的基本物理特性和它的流动结构。重点讨论了三维定常分离的两种模式及其判别准则;在三维分离流中应用奇点拓扑理论的定性分析;按照流动的物理特性对三维分离的分类;分离面的物理特性。最后简单介绍了目前在研究湍流边界层分离方面的进展。   相似文献   

3.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

4.
Three turbulent intermittency methods, namely the , TERA (turbulent energy recognition algorithm), and M-TERA (modified turbulent energy recognition algorithm) methods, for identifying the intermittent flow characteristics associated with boundary layer transition from laminar to turbulent were considered and compared. The data used were obtained from hot-wire measurements in transitional boundary layer flows on a concave surface with a 2-m radius of curvature and on a flat plate. Comparisons show that the and TERA methods are more sensitive to the choice of threshold constants than the M-TERA method. In terms of the intermittency distribution across the boundary layer, the values obtained by the and TERA methods are unrealistically high in the near-wall region, while those obtained by the M-TERA method are more realistic. In the outer boundary layer region and outside the boundary layer, the and M-TERA methods give reasonable intermittency values, whereas the TERA method produces unrealistically high values in the region outside the boundary layer. In addition, the M-TERA method provides a sharper definition of theend of transition.  相似文献   

5.
激波与转捩边界层干扰非定常特性数值分析   总被引:1,自引:0,他引:1  
激波与边界层干扰的非定常问题是高速飞行器气动设计中基础研究内容之一.以往研究主要针对层流和湍流干扰,在分离激波低频振荡及其内在机理方面存在着上游机制和下游机制两类截然不同的理论解释.分析激波与转捩边界层干扰下非定常运动现象有助于进一步加深理解边界层状态以及分离泡结构对低频振荡特性的影响规律,为揭示其产生机理指出新的方向.采用直接数值模拟方法对来流马赫数2.9,24?压缩拐角内激波与转捩边界层干扰下激波的非定常运动特性进行了数值分析.通过在拐角上游平板特定的流向位置添加吹吸扰动激发流动转捩,使得进入拐角的边界层处于转捩初期阶段.在验证了计算程序可靠性的基础上,详细分析了转捩干扰下激波运动的间歇性和振荡特征,着重研究了分离泡展向三维结构对激波振荡特性的影响规律,最后还初步探索了转捩干扰下激波低频振荡产生的物理机制.研究结果表明:分离激波的非定常运动仍存在强间歇性和低频振荡特征,其时间尺度约为上游无干扰区内脉动信号特征尺度的10倍量级;分离泡展向三维结构不会对分离激波的低频振荡特征产生实质影响.依据瞬态脉动流场的低通滤波结果,转捩干扰下激波低频振荡的诱因来源于拐角干扰区下游,与流场中分离泡的收缩/膨胀运动存在一定的关联.  相似文献   

6.
The results of a numerical modeling of flow past a configuration consisting of two wedges with swept leading edges, so mounted on a preliminary compression surface that the beveled wedge surfaces deflect the wedge-compressed flows counter to each other, are presented. The calculations are performed on the basis of the averaged Navier-Stokes equations, together with the SST k-ω turbulence model, at the freestream Mach number M = 6. For the configuration geometry chosen the flow pattern is characterized by an irregular interaction between the wedge-induced shocks in the plane of symmetry. These shocks also induce three-dimensional, quasi-conical separations of a turbulent boundary layer on the preliminary compression wedge. In the separation zones the flows are directed toward the plane of symmetry of the configuration and interact with one another with the formation of a typical central “bulged” separation flow zone.  相似文献   

7.
Shock wave–turbulent boundary layer interaction is a critical problem in aircraft design. Therefore, a thorough understanding of the processes occurring in such flows is necessary. The most important task is to study the unsteady phenomena, in particular, the low-frequency ones, for this interaction. An experimental study of separated flow has been performed in the zone of interaction of the incident oblique shock wave with a turbulent boundary layer at Mach 2. Two-point correlation data in the separation zone and the upstream flow were obtained and showed that low-frequency oscillations of the reflected shock waves are related to pulsations in the inflow turbulent boundary layer.  相似文献   

8.
It has been well established that large‐scale structures, usually called coherent structures, exist in many transitional and turbulent flows. The topology and range of scales of those large‐scale structures vary from flow to flow such as counter‐rotating vortices in wake flows, streaks and hairpin vortices in turbulent boundary layer. There has been relatively little study of large‐scale structures in separated and reattached transitional flows. Large‐eddy simulation (LES) is employed in the current study to investigate a separated boundary layer transition under 2% free‐stream turbulence on a flat plate with a blunt leading edge. The Reynolds number based on the inlet free stream velocity and the plate thickness is 6500. A dynamic subgrid‐scale model is employed to compute the subgrid‐scale stresses more accurately in the current transitional flow case. Flow visualization has shown that the Kelvin–Helmholtz rolls, which have been so clearly visible under no free‐stream turbulence (NFST) are not as apparent in the present study. The Lambda‐shaped vortical structures which can be clearly seen in the NFST case can hardly be identified in the free‐stream turbulence (FST) case. Generally speaking, the effects of free‐stream turbulence have led to an early breakdown of the boundary layer, and hence increased the randomization in the vortical structures, degraded the spanwise coherence of those large‐scale structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The phenomenon of low amplitude self-sustained pitch oscillations in the transitional Reynolds number regime is studied numerically through unsteady, two-dimensional aeroelastic simulations. Based on the experimental data, simulations have been limited in the Reynolds number range 5.0×104<Rec<1.5×105. Both laminar and URANS calculations (using the SST kω model with a low-Reynolds-number correction) have been performed and found to produce reasonably accurate limit cycle pitching oscillations (LCO). This investigation confirms that the laminar separation of the boundary layer near the trailing edge plays a critical role in initiating and sustaining the pitching oscillations. For this reason, the phenomenon is being labelled as laminar separation flutter. As a corollary, it is also shown that turbulence tends to inhibit their existence. Furthermore, two regimes of LCO are observed, one where the flow is laminar and separated without re-attachment, and the second for which transition has occurred followed by turbulent re-attachment. Finally, it is established that the high-frequency, shear instabilities present in the flow which lead to von Kármán vortex shedding are not crucial, nor necessary, to the maintaining mechanism of the self-sustained oscillations.  相似文献   

10.
The phenomenon of the separation of a flow from the surface of a body, and the transfer of fluid which is slowed down in the boundary layer to the exterior flow, is of primary importance both in practice and in theory. From the practical point of view, flows with separation are important primarily because the separation of the boundary layer usually sets the upper limit of the efficiency, and therefore of the application, of many aerodynamic devices. From the theoretical point of view, the greatest importance lies in the problem of selecting the unique solution and the problem of elaborating effective numerical methods of studying flows with separation. The complexity of experimental research and the variety of problems connected with flow past bodies where separation occurs make the theoretical study of their general laws important. The aim of this work is to study separation zones and certain processes of controlling them on the basis of the full Navier—Stokes equations in the case of two-dimensional steady flows of a viscous incompressible fluid for moderately low Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 26–32, January–February, 1985.  相似文献   

11.
The qualitative characteristics of shock-layer flow associated with separation of the turbulent boundary layer under the influence of one or several successive shock waves are explored with reference to a number of examples typical of conical flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 68–76, May–June, 1989.  相似文献   

12.
A calculation method has been developed and used to represent flows downstream of plane symmetric expansions with dimensions and velocities encompassing laminar and turbulent flows. Except for very low Reynolds numbers, the flows are time‐dependent and asymmetric and the calculated results are appraised first in relation to published measurements of laminar flows and then to new measurements obtained at a Reynolds number of 26 500. The time‐dependent laminar simulations indicate that the critical Reynolds numbers are predicted with excellent accuracy for different expansion ratios and the details of the asymmetric velocity profiles are in good agreement with experimental measurements. The laminar flow calculations also show that increasing the thickness of the separating boundary layer leads to longer regions of separation and no dominant frequency for Reynolds numbers up to those at which the third separation region was observed. The turbulent flow simulations made use of the k–ε turbulence model and provided a satisfactory representation of measurements, except in regions close to the wall and within the recirculation regions. Also, the longer reattachment length was underestimated. Limitations are discussed in relation to these and higher‐order assumptions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
借助γ-Reθ转捩模型,实现了高亚临界雷诺数(Re=1.4×105)下圆柱层流分离流动的尺度自适应模拟.统计平均结果表明数值计算和实验测量较为接近,尤其在圆柱后半段的分离区中,压力系数和实验符合得很好,误差主要源于分离点预测的不准确. 瞬态流动则显示,层流分离的剪切层中出现了展向不稳定,且在向下游的输运过程中不断增强,最后转捩为完全湍流. 在湍流分离模拟中,由于缺乏剪切层失稳的非定常性,SST-SAS 模型的尺度分辨能力变弱,因此在分离区以及下游尾迹中求解出的湍流尺度要明显较层流分离时大.  相似文献   

14.
杜磊  宁方飞 《力学学报》2014,46(4):487-496
借助γ-Reθ转捩模型,实现了高亚临界雷诺数(Re=1.4×105)下圆柱层流分离流动的尺度自适应模拟.统计平均结果表明数值计算和实验测量较为接近,尤其在圆柱后半段的分离区中,压力系数和实验符合得很好,误差主要源于分离点预测的不准确. 瞬态流动则显示,层流分离的剪切层中出现了展向不稳定,且在向下游的输运过程中不断增强,最后转捩为完全湍流. 在湍流分离模拟中,由于缺乏剪切层失稳的非定常性,SST-SAS 模型的尺度分辨能力变弱,因此在分离区以及下游尾迹中求解出的湍流尺度要明显较层流分离时大.   相似文献   

15.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

16.
This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed. The project supported by National Natural Science Foundation of China  相似文献   

17.
The stability of flow with laminar boundary layer separation from a body of revolution aligned with an incompressible gas stream is investigated in a wind tunnel. In several experimental regimes with respect to the Reynolds number hot-wire anemometry is used to determine the main parameters of disturbances which grow behind the separation line, thus initiating transition to the turbulent flow state. The relations between the frequencies, the spatial growth rates of the most “hazardous” disturbances, and the integral characteristics of velocity profiles obtained in the study are in good agreement with the analogous data for plane separation flows.  相似文献   

18.
A relatively simple, yet efficient and accurate finite difference method is developed for the solution of the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar boundary layers are performed from low to very high oscillation frequencies, for small and large amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of significant flow reversal. The numerical method is then applied to predict a relatively simple experimental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The predictions are shown to be in good agreement with the measurements, thereby demonstrating the suitability of the present numerical scheme for handling periodic turbulent boundary layers. The method is thus a useful tool for the further development of turbulence models for more complex unsteady flows.  相似文献   

19.
 The spatial-temporal progressions of the leading-edge stagnation, separation and reattachment points, and the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, were measured using 140 closely-spaced, multiple hot-film sensors (MHFS). The MHFS measurements show that (i) the laminar separation point and transition were delayed with increasing α and the reattachment and relaminarization were promoted with decreasing α, relative to the static case, (ii) the pitchup motion helped to keep the boundary layer attached to higher angles of attack over that could be obtained statically, (iii) the dynamic stall process was initiated by the turbulent flow separation in the leading-edge region as well as by the onset of flow reversal in the trailing-edge region, and (iv) the dynamic stall process was found not to originate with the bursting of a laminar separation bubble, but with a breakdown of the turbulent boundary layer. The MHFS measurements also show that the flow unsteadiness caused by airfoil motion as well as by the flow disturbances can be detected simultaneously and nonintrusively. The MHFS characterizations of the unsteady boundary layers are useful in the study of unsteady separated flowfields generated by rapidly maneuvering aircraft, helicopter rotor blades, and wing energy machines. Received: 17 June 1997 / Accepted: 10 December 1997  相似文献   

20.
Planar laser Rayleigh scattering (PLRS) from condensed CO2 particles is used to visualize flow structure in a Mach 5 wind tunnel undergoing unstart. Detailed flow features such as laminar/turbulent boundary layers and shockwaves are readily illustrated by the technique. A downstream transverse air jet, inducing flow unchoking downstream of the jet, is injected into the free stream flow of the tunnel, resulting in tunnel unstart. Time sequential PLRS images reveal that the boundary layer growth/separation on a surface with a thick turbulent boundary layer, initiated by the jet injection, propagates upstream and produces an oblique unstart shock. The tunnel unstarts upon the arrival of the shock at the inlet. In contrast, earlier flow separation on the opposite surface, initially supporting a thin laminar boundary layer, is observed when a jet induced bow shock strikes that surface. The resulting disturbance to this boundary layer also propagates upstream and precedes the formation of an unstart shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号