首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

2.
Two heterotrinuclear oligomeric complexes [trans-RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)](2)[MCl(2)] (M = Pd ; M = Pt ) are prepared from the metalloligand trans-[RuCl(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)] (dppm = Ph(2)PCH(2)PPh(2), ). The resultant linear alignment of the metals [Ru-M-Ru] is imposed by a combinative use of trans-directed spacers and planar metals with trans-juxtaposed donor sites. Ligand exchange of with [Pd(CH(3)CN)(4)][PF(6)](2) gives trans-[Ru(CH(3)CN)(C[triple bond, length as m-dash]Cpy-4)(dppm)(2)][PF(6)] (). All complexes are characterized by single-crystal X-ray crystallography and solution spectroscopy. Acid-base titration on suggested protonation of the pendant pyridyl. Complexes and also undergo protonation at the C[triple bond, length as m-dash]C moiety under acid conditions. The inter-conversion of alkynyl and vinylidene functionality is described. The dual acid and base characters of makes it a potential metalloligand towards basic and acidic fragments in multinuclear heterometallic assemblies.  相似文献   

3.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

4.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

5.
Two series of stable cyanide-bridged linkage isomers, namely [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] (XY = CN or NC, L = CNBu(t) or CNXyl) and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC-CPh)Tp'] {M = Mo or W, L = PPh3 or P(OPh)3, Tp' = hydrotris(3,5-dimethylpyrazolyl)borate} have been synthesised; pairs of isomers are distinguishable by IR spectroscopy and cyclic voltammetry. The molecular structure of [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-NC)Mo(CO)(PhC-CPh)Tp'] has the catecholate-bound ruthenium atom cyanide-bridged to a Mo(CO)(PhC[triple band]CPh)Tp' unit in which the alkyne acts as a four-electron donor; the alignment of the alkyne relative to the Mo-CO vector suggests the fragment (CN)Ru(CO)2(PPh3)(o-O2C6Cl4) acts as a pi-acceptor ligand. The complexes [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)Mn(NO)L(eta-C5Me5)] undergo three sequential one-electron oxidation processes with the first and third assigned to oxidation of the ruthenium-bound o-O2C6Cl4 ligand; the second corresponds to oxidation of Mn(I) to Mn(n). The complexes [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] are also first oxidised at the catecholate ligand; the second oxidation, and one-electron reduction, are based on the M(CO)(PhC[triple band]CPh)Tp' fragment. Chemical oxidation of [(o-O,C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)] with [Fe(eta-C5H4COMe)(eta-C5H5)][BF4], or of [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp'] with AgBF4, gave the paramagnetic monocations [(o-O2C6Cl4)(Ph3P)(OC)2Ru(mu-XY)MnL(NO)(eta-C5Me5)]+ and [(o-O2C6Cl4)L(OC)2Ru(mu-XY)M(CO)(PhC[triple band]CPh)Tp']+, the ESR spectra of which are consistent with ruthenium-bound semiquinone ligands. Linkage isomers are distinguishable by the magnitude of the 31P hyperfine coupling constant; complexes with N-bound Ru(o-O2C6Cl4) units also show small hyperfine coupling to the nitrogen atom of the cyanide bridge.  相似文献   

6.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

7.
Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 revealing a butterfly W2Ir2 unit capped by a Ru(eta-C5H5) group resulting from Ru-C scission; the terminal C2 of a new ruthenium-bound butadiyndiyl ligand has been inserted into the W-Ir bond. Reaction between 1a, [WIr3(CO)11(eta-C5H4Me)] (1b), or 1c and [(eta-C5H5)(CO)3W(C[triple bond]CC[triple bond]C)W(CO)3(eta-C5H5)] afforded [W2Ir3{mu4-eta2-(C2C[triple bond]C)W(CO)3(eta-C5H5)}(mu-CO)2(CO)2(eta-C5H5)(eta-C5R5)] [R = H (7a), Me (7c); R5 = H4Me (7b)] in good yield, a structural study of 7c revealing it to be a metallaethynyl analogue of 3.  相似文献   

8.
Two methodologies of C-C bond formation to achieve organometallic complexes with 7 or 9 conjugated carbon atoms are described. A C7 annelated trans-[Cl(dppe)2Ru=C=C=C-CH=C(CH2)-C[triple bond]C-Ru(dppe)2Cl][X] (X = PF6, OTf) complex is obtained from the diyne trans-[Cl(dppe)2Ru-(C[triple bond]C)2-R] (R = H, SiMe3) in the presence of [FeCp2][PF6] or HOTf, and C7 or C9 complexes trans-[Cl(dppe)2Ru-(C[triple bond]C)n-C(CH3)=C(R1)-C(R2)=C=C=Ru(dppe)2Cl][X] (n = 1, 2; R1 = Me, Ph, R2 = H, Me; X = BF4, OTf) are formed in the presence of a polyyne trans-[Cl(dppe)2Ru-(C[triple bond]C)n-R] (n = 2, 3; R = H, SiMe3) with a ruthenium allenylidene trans-[Cl(dppe)2Ru=C=C=C(CH2R1)R2][X]. These reactions proceed under mild conditions and involve cumulenic intermediates [M+]=(C=)nCHR (n = 3, 5), including a hexapentaenylidene. A combination of chemical, electrochemical, spectroscopic (UV-vis, IR, NIR, EPR), and theoretical (DFT) techniques is used to show the influence of the nature and conformation of the bridge on the properties of the complexes and to give a picture of the electron delocalization in the reduced and oxidized states. These studies demonstrate that the C7 bridging ligand spanning the metal centers by almost 12 angstroms is implicated in both redox processes and serves as a molecular wire to convey the unpaired electron with no tendency for spin localization on one of the halves of the molecules. The reactivity of the C7 complexes toward protonation and deprotonation led to original bis(acetylides), vinylidene-allenylidene, or carbyne-vinylidene species such as trans-[Cl(dppe)2Ru[triple bond]C-CH=C(CH3)-CH=C(CH3)-HC=C=Ru(dppe)2Cl][BF4]3.  相似文献   

9.
The synthesis and reaction chemistry of heteromultimetallic transition-metal complexes by linking diverse metal-complex building blocks with multifunctional carbon-rich alkynyl-, benzene-, and bipyridyl-based bridging units is discussed. In context with this background, the preparation of [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-(PPh(2))C(6)H(3)] (10) (dppf = 1,1'-bis(diphenylphosphino)ferrocene; tBu(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridyl; Ph = phenyl) is described; this complex can react further, leading to the successful synthesis of heterometallic complexes of higher nuclearity. Heterotetrametallic transition-metal compounds were formed when 10 was reacted with [{(eta(5)-C(5)Me(5))RhCl(2)}(2)] (18), [(Et(2)S)(2)PtCl(2)] (20) or [(tht)AuC[triple bond]C-bpy] (24) (Me = methyl; Et = ethyl; tht = tetrahydrothiophene; bpy = 2,2'-bipyridyl-5-yl). Complexes [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)RhCl(2)(eta(5)-C(5)Me(5))}C(6)H(3)] (19), [{1-[(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C]-3-[(tBu(2)bpy)(CO)(3)ReC[triple bond]C]-5-(PPh(2))C(6)H(3)}(2)PtCl(2)] (21), and [1-{(eta(2)-dppf)(eta(5)-C(5)H(5))RuC[triple bond]C}-3-{(tBu(2)bpy)(CO)(3)ReC[triple bond]C}-5-{PPh(2)AuC[triple bond]C-bpy}C(6)H(3)] (25) were thereby obtained in good yield. After a prolonged time in solution, complex 25 undergoes a transmetallation reaction to produce [(tBu(2)bpy)(CO)(3)ReC[triple bond]C-bpy] (26). Moreover, the bipyridyl building block in 25 allowed the synthesis of Fe-Ru-Re-Au-Mo- (28) and Fe-Ru-Re-Au-Cu-Ti-based (30) assemblies on addition of [(nbd)Mo(CO)(4)] (27), (nbd = 1,5-norbornadiene), or [{[Ti](mu-sigma,pi-C[triple bond]CSiMe(3))(2)}Cu(N[triple bond]CMe)][PF(6)] (29) ([Ti] = (eta(5)-C(5)H(4)SiMe(3))(2)Ti) to 25. The identities of 5, 6, 8, 10-12, 14-16, 19, 21, 25, 26, 28, and 30 have been confirmed by elemental analysis and IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR spectroscopy. From selected samples ESI-TOF mass spectra were measured. The solid-state structures of 8, 12, 19 and 26 were additionally solved by single-crystal X-ray structure analysis, confirming the structural assignment made from spectroscopy.  相似文献   

10.
Wang CF  Zuo JL  Ying JW  Ren T  You XZ 《Inorganic chemistry》2008,47(20):9716-9722
Four tetranuclear heterometallic compounds, [(Tp)Fe(CN)3]2[Ru2(DMBA)4] (1), [(MeTp)Fe(CN)3]2[Ru2(DMBA)4] (2), [((i)BuTp)Fe(CN)3]2[Ru2(DMBA)4] (3), and [(PhTp)Fe(CN)3]2[Ru2(DMBA)4] (4) [DMBA = N,N'-dimethylbenzamidinate, Tp = (hydrotris(pyrazolyl)borate, MeTp = (methyltris(pyrazolyl)borate, (i)BuTp = (2-methylpropyltris(pyrazolyl)borate, and PhTp = (tris(pyrazolyl)phenylborate)] were prepared from the combination of Ru2(DMBA)4(NO3)2 and an appropriate [(RTp)Fe(CN)3](-). Molecular structures of compounds 1-4 were established using single-crystal X-ray diffraction, and all feature a linear Fe-C[triple bond]N-Ru-Ru-N[triple bond]C-Fe array. The magnetic study revealed that the temperature dependence of chi(M)T is mostly attributed to the zero-field splitting of the Ru2 center, indicating the absence of strong spin coupling among three metallic centers. The electronic independence was further confirmed by the vis-NIR spectroscopic studies. Also described are the voltammetric properties of these compounds.  相似文献   

11.
Li Z  Beatty AM  Fehlner TP 《Inorganic chemistry》2003,42(18):5707-5714
Utilization of binary information encoded in the charge configuration of quantum-dot cells (the quantum-dot cellular automata, QCA, paradigm) requires molecule-sized dots for room temperature operation. Molecular QCA cells are mixed-valence complexes, and the evaluation and functionalization of an unsymmetrical heterobinuclear, two-dot, Fe-Ru molecular QCA cell is described. The solid state structures of trans-RuCl(dppm)(2)(C[triple bond]CFc) (1) (dppm = methylbis(diphenylphosphane), Fc = (eta(5)-C(5)H(5))Fe(eta(5)-C(5)H(4))) and mixed-valence [trans-RuCl(dppm)(2)(C[triple bond]CFc)][BF(4)] (1a) as well as XPS and spectroscopic data suggest class II behavior suitable for the intended application. Utilization of the trans-Cl position of 1 permits functionalization for surface binding. Two "tailed" complexes of 1, trans-Ru(dppm)(2)(C[triple bond]CFc)(C[triple bond]CPhOCH(3)) (2) and trans-[Ru(dppm)(2)(C[triple bond]CFc)(N[triple bond]CCH(2)CH(2)NH(2))][PF(6)] (3), have been prepared and characterized. The solid state structure of 3 and multinuclear NMR experiments define the structures. In addition, the spectroscopic properties of all complexes and their mixed-valence species are used to define the effect of the substituent "tail" on mixed-valence properties. Further, the electrochemistry of these compounds permits assessment of the extent of perturbation of the substituents on the comproportionation constants and overall electrochemical stability. The complexes possess properties necessary for candidate QCA molecules.  相似文献   

12.
Facile synthetic routes have been developed that provide access to cationic and anionic water-soluble polyferrocenylsilane (PFS) polyelectrolytes with controlled molecular weight and narrow polydispersity. Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophane (fc) monomers [fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}] (3), [fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2)] (10), [fcSiMe(C[triple chemical bond]CCH(2)NMe(2))] (14), and [fcSiMe(p-C(6)H(4)CH(2)NMe(2))] (20) yielded the corresponding polyferrocenylsilanes [(fcSiMe{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)})(n)](5), [(fcSi{C[triple chemical bond]CCH(2)N(SiMe(2)CH(2))(2)}(2))(n)] (11), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(2))}(n)] (15), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(2))}(n)] (21) with controlled architectures. Further derivatization of 5, 15, and 21 generated water-soluble polyelectrolytes [(fcSiMe{C[triple chemical bond]CCH(2)N(CH(2)CH(2)CH(2)SO(3)Na)(2)})(n)] (6), [{fcSiMe(C[triple chemical bond]CCH(2)NMe(3)OSO(3)Me)}(n)] (7), and [{fcSiMe(p-C(6)H(4)CH(2)NMe(3)OSO(3)Me)}(n)] (22), respectively. The polyelectrolytes were readily soluble in water and NaCl aqueous solutions, with 6 and 22 exhibiting long-term stability in aqueous media. The PFS materials 6 and 22, have been utilized in the layer-by-layer (LbL) self-assembly of electrostatic superlattices. Our preliminary studies have indicated that films made from controlled low molecular-weight PFSs possess a considerably thinner bilayer thickness and higher refractive index than those made from PFSs that have an uncontrolled high molecular-weight. These results suggest that the structure and optical properties of LbL ultra-thin films can be tuned by varying polyelectrolyte chain length. The water-soluble low molecular weight PFSs are also useful materials for a range of applications including LbL self-assembly in highly confined spaces.  相似文献   

13.
Symmetrically disubstituted bis(3-hydroxyalkynyl) complex [TpRu{C[triple chemical bond]CCPh(2)(OH)}(2)(NO)] (1) (Tp = BH(pyrazol-1-yl)(3)) and unsymmetrically mixed (arylalkynyl)(3-hydroxyalkynyl) congener [TpRu(C[triple chemical bond]CC(6)H(4)Me){C[triple chemical bond]CCPh(2)(OH)}(NO)] (2) were newly prepared. Treatment of 1 or 2 with p-toluenesulfonic acid monohydrate was carried out to give unusual four-membered metallacyclic complexes [TpRu{C(=C=CPh(2))C(O)C(=CPh(2))}(NO)] (3) and [TpRu{C(=C=CPh(2))C(O)CH(C(6)H(4)Me)}(NO)] (5), respectively, as major products. Formation mechanism of 3 and 5 would involve insertion of the generated allenylidene group (Ru=C=C=CPh(2)) into the other Ru--C(alkynyl) bond, followed by hydration of the resulting alpha-alkynyl--allenyl fragment. With regards to the chemical reactivity of their four-membered metallacycles, treatment with aq. HCl in MeOH afforded the ring-opened one-HCl adducts, [TpRuCl{C(=C=CPh(2))C(O)CH=CPh(2)}(NO)] (7) and [TpRuCl{C(=C=CPh(2))C(O)CH(2)(C(6)H(4)Me)}(NO)] (8). On the other hand, the use of CH(2)Cl(2) and THF as the reaction solvent gave another type of one-HCl adducts [TpRu{CH(C(Cl)=CPh(2))C(O)C(==CPh(2))}(NO)] (9 a/9 b) and [TpRu{CH(C(Cl)=CPh(2))C(O)CH(C(6)H(4)Me)}(NO)] (11 a/11 b) as diastereomeric pairs, still retaining the four-membered ring structure. Moreover, their kinetically controlled products 9 b and 11 b were treated with aq. HCl to afford the ring-opened two-HCl adducts [TpRuCl{C(C(Cl)=CPh(2))(H)C(O)CH=CPh(2)}(NO)] (10) and [TpRuCl{CH(C(6)H(4)Me)C(O)CH(2)(C(Cl)=CPh(2))}(NO)] (12), respectively. In 10 and 12, each one Ru--C bond is cleaved at mutually different positions in the ring. Protonation on the carbonyl group would trigger the formation of 7-12.  相似文献   

14.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

15.
New cobalt-containing secondary phosphine oxides [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(H)(R)}] (8 a: R=tBu; 8 b: R=Ph) were prepared by reaction of secondary phosphine oxides PhC[triple chemical bond]CP- (==O)(H)(R) (6 a: R=tBu; 6 b: R=Ph) with dppm-bridged dicobalt complex [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(6)] (2). The molecular structures of 8 a and 8 b were determined by single-crystal X-ray diffraction. Although palladium-catalyzed Heck reactions employing 8 b as ligand gave satisfying results, 8 a performed poorly in the same reaction. Judging from these results, a tautomeric equilibrium between 8 b and its isomeric form [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(Ph)}] 8 b' indeed takes place, but it is unlikely between 8 a and [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(OH)(tBu)}] (8 a'). The DFT studies demonstrated that reasonable activation energies for the tautomeric conversions can be achieved only via a bimolecular pathway. Since a tBu group is much larger than a Ph group, the conversion is presumably only feasible in the case of 8 bright harpoon over left harpoon8 b', but not in the case of 8 aright harpoon over left harpoon8 a'. Another cobalt-containing phosphine, namely, [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(NEt(2))(tBu)}] (7 a), and its oxidation product [(mu-PPh(2)CH(2)PPh(2))Co(2)(CO)(4){mu,eta-PhC[triple chemical bond]CP(==O)(NEt(2))(tBu)}] 7 a' were prepared from the reaction of PhC[triple chemical bond]CP(NEt(2))(tBu) (5 a) with 2. The molecular structures of 7 a and 7 a' were determined by single-crystal X-ray diffraction. The phosphorus atom is surrounded by substituents in a tetrahedral environment. A P--N single bond (1.676(3) A) is observed in the molecular structure of 7 a. Heck reactions employing 7 a/Pd(OAc)(2) as catalyst system exhibited efficiency comparable to that of 8 a/Pd(OAc)(2).  相似文献   

16.
A novel series of [PtTl(2)(C[triple chemical bond]CR)(4)](n) (n = 2, R = 4-CH(3)C(6)H(4) (Tol) 1, 1-naphthyl (Np) 2; n = infinity, R = 4-CF(3)C(6)H(4) (Tol(F)) 3) complexes has been synthesized by neutralization reactions between the previously reported [Pt(C[triple chemical bond]CR)(4)](2-) (R = Tol, Tol(F)) or novel (NBu(4))(2)[Pt(C[triple chemical bond]CNp)(4)] platinum precursors and Tl(I) (TlNO(3) or TlPF(6)). The crystal structures of [Pt(2)Tl(4)(C[triple chemical bond]CTol)(8)]4 acetone, 14 acetone, [Pt(2)Tl(4)(C[triple chemical bond]CNp)(8)]3 acetone1/3 H(2)O, 23 acetone 1/3 H(2)O and [[PtTl(2)(C[triple chemical bond]CTol(F))(4)](acetone)S](infinity) (S = acetone 3 a; dioxane 3 b) have been solved by X-ray diffraction studies. Interestingly, whereas in the tolyl (1) and naphthyl (2) derivatives, the thallium centers exhibit a bonding preference for the electron-rich alkyne entities to yield crystal lattices based on sandwich hexanuclear [Pt(2)Tl(4)(C[triple chemical bond]CR)(8)] clusters (with additional Tlacetone (1) or Tlnaphthyl (2) secondary interactions), in the C(6)H(4)CF(3) (Tol(F)) derivatives 3 a and 3 b the basic Pt(II) center forms two unsupported Pt-Tl bonds. As a consequence 3 a and 3 b form an extended columnar structure based on trimetallic slipped PtTl(2)(C[triple chemical bond]CTol(F))(4) units that are connected through secondary Tl(eta(2)-acetylenic) interactions. The luminescent properties of these complexes, which in solution (blue; CH(2)Cl(2) 1,2; acetone 3) are very different to those in solid state (orange), have been studied. Curiously, solid-state emission from 1 is dependent on the presence of acetone (green) and its crystallinity. On the other hand, while a powder sample of 3 is pale yellow and displays blue (457 nm) and orange (611 nm) emissions, the corresponding pellets (KBr, solid) of 3, or the fine powder obtained by grinding, are orange and only exhibit a very intense orange emission (590 nm).  相似文献   

17.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

18.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

19.
The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.  相似文献   

20.
trans-[(H(2)NCH(2)CH(2)C triple bond N)(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)(N triple bond CCH(2)CH(2)NH(2))][PF(6)](2), 2[PF(6)](2), a derivative of trans-[Cl(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)Cl] functionalized for binding to a silicon substrate, has been prepared and characterized spectroscopically, electrochemically, and with a solid state, single-crystal structure determination. Covalent binding via reaction of one amine group to a boron-doped, smooth Si-Cl substrate is verified by XPS measurements and surface electrochemistry. Vertical orientation is demonstrated by film thickness measurements. Synthesis of the 2[PF(6)](3) mixed-valence complex on the surface is established by electrochemical techniques. Measurement of the ac capacitance of the film at 1 MHz as a function of voltage across the film with a pulse-counter pulse technique demonstrates controlled electric field generation of the two stable mixed-valence forms differing in the spatial location of one electron, that is, switching. As compared to [trans-Ru(dppm)(2)(C triple bond CFc)(NCCH(2)CH(2)NH(2))][PF(6)][Cl], 1[PF(6)][Cl], the magnitude of the capacitance signal per complex observed on switching is shown to increase with increasing distance between the metal centers. Additional experiments on 1[X][Cl] show that the potential for switching 1[X][Cl] increases in the order [X](-) = [SO(3)CF(3)](-) < [PF(6)](-) < [Cl](-). A simple electrostatic model suggests that the smaller is the counterion, the greater is the perturbation of the metal sites and the larger is the barrier for switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号