首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Problems, associated with electrochemical dimensional treatment and chemical deposition as methods of manufacturing nanocomposites based on the AIIIBV semiconductors, are considered by studying indium phosphide (n-InP). The results of manufacturing nanocomposites Cu-n-InP and Ag-n-InP by chemical deposition of copper and silver into pores produced by electrochemical anodic dissolution are described. The metallization kinetics and peculiarities of metal distribution inside nanopores at large values of A are described (A = h/d is a geometrical factor or an aspect ratio, where h and d are the pore’s depth and diameter). It is shown that the degree of the nanopores’ filling is defined by the chemical deposition rate. A relatively high copper deposition rate pertaining to the manufacturing of Cu-n-InP leads to a low throwing power of electrolyte and, as a consequence, to a low level of the pores’ filling. Conversely, the substantially lower rate of the silver chemical deposition from a triethanolamine-containing solution leads to a better uniformness of deposition and to the reaching of conditions conducive to a higher degree of the pores’ filling with metal.  相似文献   

2.
The wetting behavior of several flax (cellulose as reference) and polypropylene fibers is characterized by measuring the wetting rates (penetration velocities) of a series of liquids using the capillary rise technique. This present paper aims to provide a deeper understanding of the complex nature of natural fibers and their surface properties. The fiber surface tensions are estimated from plots of the normalized wetting rate as a function of the surface tension of the liquids assuming, in analogy to Zisman's method, that the maximum of the normalized wetting rate corresponds to the solid surface tension. The estimated surface tensions of the investigated flax fibers indicate that all the fibers are quite "hydrophobic." The method used to separate the fibers from the rest of the plants has a large influence on the estimated fiber surface tensions. In the case of polypropylene (PP) fibers, the estimated surface tension corresponds well with literature data. Grafting small amounts of maleic acid anhydrite (MAH) onto the PP surfaces will not affect the wetting behavior and, therefore, the surface tension, whereas grafting larger amounts (10 wt%) of MAH causes the polymer surface tension to increase significantly. Additional pH-dependent zeta-potential measurements show that even the "pure" PP-fibers contain acidic surface functions, possibly due to further processing at elevated temperatures (thermal degradation or other aging processes).  相似文献   

3.
The development of green nanocomposites based on biopolymers and bio-based nanofillers has attracted over the recent years the attention of academic and industrial research. Indeed, these nanocomposites could replace some oil-derived polymers and thus helping to overcome environmental problems. In this regard, PLA as matrix and polysaccharide nanocrystals as fillers are the most promising components to obtain high-performance green bio-nanocomposites suitable for different applications, particularly for packaging and biomedical applications. Indeed, at present, due to its processability, mechanical and biological properties, as well as its commercial availability, poly(lactic acid) (PLA) possesses one of the highest potentials among biopolymers whereas polysaccharide nanocrystals can be considered the most promising bio-based reinforcements due to their availability, renewability, versatility, biodegradability and high aspect ratio. Aim of this review is to give an overview on the preparation routes and main properties of PLA/polysaccharide nanocomposites highlighting the main differences among the three main polysaccharide nanocrystals, i.e. cellulose, chitin, and starch.  相似文献   

4.
Aminosilane has been explored as an alternative chemical linker to facilitate the binding and solidification of hydroxyapatite-gelatin nanocomposite at room temperature, which was synthesized using co-precipitation method in the presence of gelatin. This aminosilane treatment was found effective at low concentration (~25 μL/mL) and the solidification and dehydration of hydroxyapatite-gelatin slurry completes within hours depending on the amount of aminosilane. The resulting sample exhibits compressive strength of 133 MPa, about 40% higher than glutaraldehyde treated samples, and shows good biocompatibility based on cell adhesion, proliferation, alkaline phosphate synthesis, and mineralization studies.  相似文献   

5.
Correlations between the composition, structure, and sensor properties of SnO2-MIIO (MIIO = Fe2O3, MoO3, V2O5) nanocomposites prepared by wet chemistry synthesis were elucidated. The elemental and phase compositions of the materials, distribution of components between the bulk and surface, particle size, and specific surface area were examined. Surface modification of semiconductor oxides allows controlling the type and density of surface acid centers and redox properties of materials. The result is an increase in the sensor selectivity.  相似文献   

6.
The homoionic montmorillonites Ca-MMT, Mg-MMT, Ba-MMT and Ca-MMT intercalated with ε-caprolactam - Ca-MMT·CL were prepared from commercial Na-MMT and characterized by WAXS and TGA. They were used as fillers for nanocomposites of polyamide 6 synthesized either by anionic polymerization of ε-caprolactam (monomer casting) or by melt blending. WAXS analysis showed that the intercalation of MMT by the polyamide was complete for all nanocomposites, with only a very small fraction of exfoliated platelets being detected by TEM. The decrease in the number of layers in the MMT tactoids suggests that tactoid splitting was lower for the blended nanocomposites than for the polymerized ones. Both the rate of polymerization and the polyamide yield in the nanocomposites were comparable to those of an unfilled system. The MMT fillers, the density of which was more than twice that of the ε-caprolactam in which they were suspended, sedimented during the first stage of polymerization. TGA was used to determine the degree of sedimentation at various levels of the resulting mold. In line with the coordination of polyamide chains to the surface cations of MMT particles, the sedimentation level increased in the following sequence: Mg-MMT < Ba-MMT < Ca-MMT·CL << Na-MMT. Ca-MMT was found to be the only non-sedimenting filler suitable for use in the synthesis of polyamide nanocomposites by either monomer casting or the use of reactive injection molding (RIM) technologies.  相似文献   

7.
Metallopolymer nanocomposites on the bases of cobalt and iron acrylates as well as their cocrystallites have been obtained and characterized. Microstructure of the materials consists of both agglomerated and individual nanocrystallites which are homogeneously distributed in the polymer matrix. Mean crystallite size is 7-14 nm. All the composite materials exhibit soft magnetic properties at room temperature. The magnetic parameters are controlled by the intrinsic magnetic properties of the constituents and agglomeration of the particles.  相似文献   

8.
Multiwall carbon nanotubes (MWCNTs) can be spread out in acrylonitrile butadiene styrene (ABS) using a twin-screw micro-compounding extruder. It can significantly improve the mechanical properties of 3D-printed objects. Dispersed MWCNTs in pure ABS to develop the nanocomposites through a two-time micro compounding extruding process. 3D printed filaments with a diameter of 1.75 mm have been prepared by processing the acquired composite structure through a filament extruder. The mechanical and other properties of 3D printed pure ABS and 1, 2, and 3 wt.% of the fused deposition modeling (FDM) process were studied for MWCNTs/ABS composites. Compared with pure ABS, the tensile and thermal properties were significant for 1, 2, and 3 wt.% of MWCNTs/ABS composites. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were also analyzed for 0, 1, 2, and 3 wt.% MWCNTs/ABS composites. Additive manufacturing (AM) processes have recently been emphasized for their applications in electronics, aerospace, biomedical, and automobile engineering.  相似文献   

9.
Hydrogen (H2) is regarded as an important energy carrier to achieve a clean and sustainable future. In particular, protonic ceramic cells (PCCs) as promising energy conversion technologies have received rapidly increasing attention for the production and use of H2, showing higher energy efficiencies at reduced temperatures than oxygen-ion-conducting counterparts. Nevertheless, the sluggish kinetics of air electrodes for oxygen reduction/evolution reactions has become one of the main obstacles to achieving high-efficiency PCCs. Therefore, the key point to realizing the commercialization of PCCs is the development of high-performance air electrodes. Particularly, perovskite-based nanocomposites received increasing interests as high-efficiency air electrodes for PCCs recently due to the synergistic effect and strong interaction between various phases with different functionalities at nanoscale. Herein, the advances of this area in 2020–2022 are mainly reviewed by highlighting the superiorities, design strategies, and remaining challenges of perovskite-based nanocomposites as air electrodes for PCCs at reduced temperatures.  相似文献   

10.
Two types of transparent gold-containing organo-inorganic hybrid gels (polymer nanocomposites) in which gold nanoparticles (nano-Au) are efficient species were synthesized. The stage of hybrid gel formation is preceded by the in situ chemical reduction of chloroauric acid in an aqueous solution of the synthetic linear polymer (polyvinyl alcohol or poly(N-vinylpyrrolidone)) affording a nano-Au. The presence of ultradispersed gold particles in the obtained nanocomposites was confirmed by UV-Vis spectroscopy and electron microscopy. The loss of solubility of the films in water confirms the formation of a gel network. The size of the gold particles and characteristics of the hybrid gel change depending on the molecular weight of the polymer. The interaction of the macromolecules and growing particles mainly determines the diameter and number of particles of the inorganic phase, whereas the content of chloroauric acid affects these parameters to a less extent. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 329–336, February, 2008.  相似文献   

11.
Journal of Solid State Electrochemistry - Nanocomposites consisting of the conducting polymer, polyaniline (PANI), and multiwalled carbon nanotubes (MWNT) were prepared by in situ emulsion...  相似文献   

12.
In this work, we demonstrate a new kind of Pt-free counter electrode for dye-sensitized solar cells(DSCs). Polypyrrole-cobalt-carbon(PPY-Co-C) nanocomposites, with the advantages of low cost and simple preparation, show favorable catalytic activity in promoting tri-iodide reduction. The DSC composed of the PPY-Co-C nanocomposite electrode exhibits an acceptable energy conversion efficiency of 6.01%, a considerable short-circuit photocurrent of 15.33 mA cm-2, and a low charge-transfer resistance of 1.5 Ω cm2. The overall performance of PPY-Co-C is superior to the carbon counterparts and comparable with the platinum reference, rendering them efficient and promising counter electrode materials for DSCs.  相似文献   

13.
This review article investigates the hot topics by presenting the latest advances on graphene-based nanostructures for supercapacitors. In literature, many scientists have studied the nanomaterials and combination of conducting polymers in supercapacitor (SC) devices. The main aim of this review article is to present the higher capacitance, and higher power and energy density performances of the SC devices, which includes the active materials of carbon-based materials, metal oxides, conducting polymers, nanocomposites, etc. Many conventional techniques have already been used such as photolithography, inkjet printing, etc. Each of these methods has specific advantages and some drawbacks, with some working better in different environments. Among various nanoscaled materials, nanocrystal oxides of transition metals play an important role in advanced materials development. In addition to design of active material, symmetric and asymmetric supercapacitor device fabrication is also directly effect to obtain a higher capacitance, energy and power density performances. Therefore, this review article focuses on supercapacitor technology in new developments, such as design of active materials, device fabrication, etc.  相似文献   

14.
This paper analyses Richard Bader’s ‘operational’ view of quantum mechanics and the role it plays in the the explanation of chemistry. I argue that QTAIM can partially be reconstructed as an ‘austere’ form of quantum mechanics, which is in turn committed to an eliminative concept of reduction that stems from Kemeny and Oppenheim. As a reductive theory in this sense, the theory fails. I conclude that QTAIM has both a regulatory and constructive function in the theories of chemistry.  相似文献   

15.
Metal cations can be looked upon as LEWIS acids and their reaction with ligands during complex formation can be compared to the addition of the proton to a base. The complex formation reactions, however, lack sharp and definite endpoints and metal cations therefore cannot be titrated with ammonia, cyanide and other ligands in the same way as the hydrogen ion can be titrated alkalimetrically. The theoretical reason for this fact is discussed and it is shown that complex formations gain the characteristic properties of neutralisation reactions if the simple ligands are replaced by a polydentate group which is able to satisfy not only one, but several of the coordination points of the metal cation. A great number of titration processes can be based on such reactions.  相似文献   

16.
17.
A power-saving technology was developed for preparing functional nanocomposites from renewable vegetable raw materials and nanosized elements.  相似文献   

18.
Usually the raw material for flax pulp production is a blend which contains fibres and shives. In order to better understanding the structure of these materials and the effects of flax pulping, X-ray diffraction and thermogravimetry analysis under air atmosphere have been used. There was a significant effect of the fibre size on the composition, crystallinity, and thermal behaviour of the flax pulps. On the other hand, data obtained from thermogravimetric analysis have been modelled on the basis of two cellulose types characterized by different crystallinity levels, using kinetics equations based on the nucleation concept. As a result of these simulations, composition of the samples, pulp crystallinity and the proportion of amorphous cellulose are calculated.  相似文献   

19.
20.
Hydrogenase is a paradigm of highly efficient biocatalyst for H2 production and utilization evolved in nature. A dilemma is that despite the high activity and efficiency expected for hydrogenases as promising catalysts for the hydrogen economy, the poor oxygen tolerance and low yield of hydrogenases largely hinder their practical application. In these years, the enigmas surrounding hydrogenases regarding their structures, oxygen tolerance, mechanisms for catalysis, redox intermediates...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号