首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

2.
We consider the groups ${\mathrm{Diff }}_\mathcal{B }(\mathbb{R }^n)$ , ${\mathrm{Diff }}_{H^\infty }(\mathbb{R }^n)$ , and ${\mathrm{Diff }}_{\mathcal{S }}(\mathbb{R }^n)$ of smooth diffeomorphisms on $\mathbb{R }^n$ which differ from the identity by a function which is in either $\mathcal{B }$ (bounded in all derivatives), $H^\infty = \bigcap _{k\ge 0}H^k$ , or $\mathcal{S }$ (rapidly decreasing). We show that all these groups are smooth regular Lie groups.  相似文献   

3.
Let $I^d $ be the d‐dimensional cube, $I^d = [0,1]^d $ , and let $F \ni f \mapsto Sf \in L_\infty (I^d ) $ be a linear operator acting on the Sobolev space F, where Fis either $$$$ or $$$$ where $$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$ We assume that the problem elements fsatisfy the condition $\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 $ and that Sis continuous with respect to the supremum norm. We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on $I^d $ . We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by $\mathcal{A}\delta $ , where $\mathcal{A} $ is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.  相似文献   

4.
The saturation rate and class of (0, m1, m2, ..., mq) trigonometric interpolation operators in $\tilde C_{2\pi } $ spaces have been determined by Cavaretta and Selvaraj. In this paper, we consider the convergence and saturation problems of these operators in $\tilde L_{2\pi }^p (1 \leqslant p< \infty )$ and obtain complete results.  相似文献   

5.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume $4 \leqslant dim V \leqslant \infty \wedge |\mathbb{F}| \in \mathbb{N}$ . A 1-isometry of the central quadric $\mathcal{F}: = \{ x \in V|q(x) = 1\}$ is a permutation ? of $\mathcal{F}$ such that (*) $$q(x - y) = \nu \Leftrightarrow q(x^\varphi - y^\varphi ) = \nu \forall x,y \in \mathcal{F}$$ holds true for a fixed element ν of $\mathbb{F}$ . For arbitraryν $\mathbb{F}$ we prove that? is induced (in a certain sense) by a semi-linear bijection $(\sigma ,\varrho ):(V,\mathbb{F}) \to (V,\mathbb{F})$ such thatq oσ =? oq, provided $\mathcal{F}$ contains lines and the exceptional case $(\nu = 2 \Lambda |\mathbb{F}| = 3 \Lambda \dim V = 4 \Lambda |\mathcal{F}| = 24)$ is excluded. In the exceptional case and as well in case of dim V = 3 there are counterexamples. The casesν ≠ 2 and v=2 require different techniques.  相似文献   

6.
7.
Let 0≤g be a dyadic Hölder continuous function with period 1 and g(0)=1, and let $G(x) = \prod\nolimits_{n = 0}^\infty {g(x/{\text{2}}^n )} $ . In this article we investigate the asymptotic behavior of $\smallint _0^{\rm T} \left| {G(x)} \right|^q dx$ and $\frac{1}{n}\sum\nolimits_{k = 0}^n {\log g(2^k x)} $ using the dynamical system techniques: the pressure function and the variational principle. An algorithm to calculate the pressure is presented. The results are applied to study the regulatiry of wavelets and Bernoulli convolutions.  相似文献   

8.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

9.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

10.
Letq be a regular quadratic form on a vector space (V, $\mathbb{F}$ ) and assume dimV ≥ 4 and ¦ $\mathbb{F}$ ¦ ≥ 4. We consider a permutation ? of the central affine quadric $\mathcal{F}$ := {x εV ¦q(x) = 1} such that $$(*)x \cdot y = \mu \Leftrightarrow x^\varphi \cdot y^\varphi = \mu \forall x,y\varepsilon \mathcal{F}$$ holds true, where μ is a fixed element of $\mathbb{F}$ and where “·” is the scalar product associated withq. We prove that ? is induced (in a certain sense) by a semi-linear bijection (σ,?): (V, $\mathbb{F}$ ) → (V, $\mathbb{F}$ ) such thatq o ?o q, provided $\mathcal{F}$ contains lines and the pair (μ, $\mathbb{F}$ ) has additional properties if there ar no planes in $\mathcal{F}$ . The cases μ, 0 and μ = 0 require different techniques.  相似文献   

11.
Let ${\mathcal{M}_g }$ be the moduli space of smooth complex projective curves of genus g. Here we prove that the subset of ${\mathcal{M}_g }$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}_g }$ . As an application we show that if ${X \in \mathcal{M}_g }$ is defined over $\mathbb{R}$ then there exists a low degree pencil ${u:X \to \mathbb{P}^1 }$ defined over $\mathbb{R}.$   相似文献   

12.
13.
In this paper, we study the integral solution operators for the $\bar \partial $ -equations on pseudoconvex domains. As a generalization of [1] for the $\bar \partial $ -equations on pseudoconvex domains with boundary of classC , we obtain the explicit integral operator solutions of $C_{p,q}^{k + \alpha } $ -form for the $\bar \partial $ -equations on pseudoconvex open sets with boundary ofC k (k≥0) and the sup-norm estimates of which solutions have similar as that [1] in form.  相似文献   

14.
We study an algebraic structure naturally associated to a standard imbedding of an $\mathcal{R} $ -space. This structure determines completely the geometry of an $\mathcal{R} $ -space and reduces to a Jordan Triple System if the $\mathcal{R} $ -space is symmetric.  相似文献   

15.
Let $U \subset L_o ([0,1],\mathcal{M},m)$ be a set of Lebesgue measurable functions. Suppose also that two seminormed spaces of real number sequences are given: $\mathcal{A}$ and $\mathcal{B}$ . We study $\left( {\mathcal{A},\mathcal{B}} \right)$ -sets U defined by the classes $\mathcal{A}$ and $\mathcal{B}$ as follows: $\forall a = (a_n ) \in \mathcal{A}, \forall (f_n (t)) \in u^\mathbb{N} $ (or for sequences similar to $(f_n (t))$ ) $\exists E = E(a) \subset [0,1], mE = 1$ such that $\{ a_n f_n (t)\} 1_E (t)\} \in \mathcal{B}, t \in [0,1]$ . We consider three versions of the definition of $\left( {\mathcal{A},\mathcal{B}} \right)$ -sets, one of which is based on functions independent in the probability sense. The case ${\mathcal{B}}=l_\infty$ is studied in detail. It is shown that $({\mathcal{A}},l_\infty)$ -independent sets are sets bounded or order bounded in some well-known function spaces (L p , L p,q , etc.) constructed with respect to the Lebesgue measure. A characterization of such sets in terms of seminormed spaces of number sequences is given. The (l 1,c °)- and $(\mathcal{A},l_1 )$ -sets were studied by E. M. Nikishin.  相似文献   

16.
If R(ω,q) denotes Dyson’s partition rank generating function, due to work of Bringmann and Ono, it is known that for roots of unity ω≠1, R(ω,q) is the “holomorphic part” of a harmonic weak Maass form. Dating back to Ramanujan, it is also known that $\widehat{R}(\omega,q):=R(\omega,q^{-1})$ is given by Eichler integrals and modular forms. In analogy to these results, more recently Monks and Ono have shown that modular forms arise in a natural way from G(ω,q), the generating function for ranks of partitions into distinct parts. Moreover, Monks and Ono pose the following problem: determine whether the function $\widehat{G}(\omega,q):=G(\omega,q^{-1})$ appears naturally in the theory of modular forms. Here we answer this question of Monks and Ono, and show that $\widehat{G}(\omega,q)$ , when combined with $\widehat{G}(\omega^{-1},q)$ and a twisted third-order mock theta of Ramanujan, form a weight 1 modular form. We provide a more general result on the modularity of certain expressions involving basic hypergeometric series and then show that our result on $\widehat {G}(\omega,q)$ may be deduced from this as a special case.  相似文献   

17.
We consider the scalar homogeneous equation $S(x) = \int_0^\infty {K(x - t)S(t)dt,{\text{ }}x \in \mathbb{R}^ + \equiv (0,\infty ),}$ with symmetric kernel $K:K( - x) = K(x),{\text{ }}x \in \mathbb{R}_1$ satisfying the conditions $0 \leqslant K \in L_1 (\mathbb{R}^ + ) \cap C^{\left( 2 \right)} (\mathbb{R}^ + )$ , $\int_0^\infty {K(t)dt > \frac{1}{2}} $ , $K' \leqslant 0{\text{ }}and 0 \leqslant K'' \downarrow {\text{ }}on \mathbb{R}^ + $ . We prove the existence of a real solution S of the equation given above with asymptotic behavior $S(x) = O(x){\text{ as }}x \to + \infty $ .  相似文献   

18.
The restriction of a Verma module of ${\bf U}(\mathfrak{sl}_3)$ to ${\bf U}(\mathfrak{sl}_2)$ is isomorphic to a Verma module tensoring with all the finite dimensional simple modules of ${\bf U}(\mathfrak{sl}_2)$ . The canonical basis of the Verma module is compatible with such a decomposition. An explicit decomposition of the tensor product of the Verma module of highest weight 0 with a finite dimensional simple module into indecomposable projective modules in the category $\mathcal O_{\rm{int}}$ of quantum $\mathfrak{sl}_2$ is given.  相似文献   

19.
For a sequence $\underline{u}=(u_n)_{n\in \mathbb{N }}$ of integers, let $t_{\underline{u}}(\mathbb{T })$ be the group of all topologically $\underline{u}$ -torsion elements of the circle group $\mathbb{T }:=\mathbb{R }/\mathbb{Z }$ . We show that for any $s\in ]0,1[$ and $m\in \{0,+\infty \}$ there exists $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has Hausdorff dimension $s$ and $s$ -dimensional Hausdorff measure equal to $m$ (no other values for $m$ are possible). More generally, for dimension functions $f,g$ with $f(t)\prec g(t), f(t)\prec \!\!\!\prec t$ and $g(t)\prec \!\!\!\prec t$ we find $\underline{u}$ such that $t_{\underline{u}}(\mathbb{T })$ has at the same time infinite $f$ -measure and null $g$ -measure.  相似文献   

20.
In this paper, we obtain analogues, in the situation of \(\mathfrak{E}\) -extensions, of Magill's theorem on lattices of compactifications. We define an epireflective subcategory of the categoryT 2 of all Hausdorff spaces to be admissive (respectively finitely admissive) if for any \(\mathfrak{E}\) -regular spaceX, every Hausdorff quotient of \(\beta _\mathfrak{E} X\) which is Urysohn on \(\beta _\mathfrak{E} X - X\) (respectively which is finitary on \(\beta _\mathfrak{E} X - X\) ) and which is identity onX, has \(\mathfrak{E}\) . We notice that there are many proper epireflective subcategories ofT 2 containing all compact spaces and which are admissive; there are many such which are not admissive but finitely admissive. We prove that when \(\mathfrak{E}\) is a finitely admissive epireflective subcategory ofT 2, then the lattices of finitary \(\mathfrak{E}\) -extensions of two spacesX andY are isomorphic if and only if \(\beta _\mathfrak{E} X - X\) and \(\beta _\mathfrak{E} Y - Y\) are homeomorphic. Further if \(\mathfrak{E}\) is admissive, then the lattices of Urysohn \(\mathfrak{E}\) -extensions ofX andY are isomorphic if and only if \(\beta _\mathfrak{E} X - X\) and \(\beta _\mathfrak{E} Y - Y\) are homeomorphic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号