首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl bis(2',5'-di-O-methylurid-3'-yl) phosphate (1), a sugar O-alkylated trinucleoside 3',3',5'-monophosphate, have been followed by RP HPLC over a wide pH range. Under neutral and mildly acidic conditions, the only reaction observed was a pH-independent cleavage of the O-C5' bond of the 5'-linked nucleoside. Under more alkaline conditions nucleophilic attack by hydroxide ion starts to compete. The reaction is first order in [OH(-)] and becomes predominant at pH 10. Each of the 3'-linked nucleosides is displaced 2.9 times as readily as the 5'-linked one. To determine the beta(lg) value for the hydroxide ion catalyzed hydrolysis of 1, two diesters (2a,b) having 2',3'-O-methyleneadenosine (7) and 2',5'-di-O-methyluridine (4) as leaving groups were hydrolyzed under alkaline conditions. Since the beta(lg) value for this reaction is known, DeltapK(a) between 4 and 7 could be calculated. The beta(lg) for the hydrolysis of 1 was estimated to be -0.5 with use of this information. The mechanisms of the partial reactions and the role of leaving group properties in ribozyme reactions of large ribozymes are discussed.  相似文献   

14.
15.
Treatment of C5'-aldehydes, under mildly basic conditions leads to the formation of 3',4'-didehydroaldehydes, and furfural. Sulfanyl radical addition eventually gives rise to the lactones, through C4'-C5' bond scission of the 1,2-dioxetane intermediates.  相似文献   

16.
17.
Hydrolytic reactions of guanosyl-(3',3')-uridine and guanosyl-(3',3')-(2',5'-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2'-hydroxyl group as a hydrogen-bond donor upon departure of the 3'-uridine moiety. Under neutral and basic conditions, guanosyl-(3',3')-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH(-)]) of the P-O3' bonds, giving uridine and guanosine 2',3'-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2'- and 3'-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3' bond of guanosyl-(3',3')-(2',5'-di-O-methyluridine) to yield 2',5'-O-dimethyluridine and guanosine 2',3'-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn(2+) on the cleavage of the P-O3' bonds of guanosyl-(3',3')-uridine is modest: about 6-fold acceleration was observed at [Zn(2+)] = 5 mmol L(-)(1) and pH 5.6. With guanosyl-(3',3')-(2',5'-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2'-hydroxyl group on the departure of the 3'-linked nucleoside, are discussed.  相似文献   

18.
Hydrolytic reactions of 2',3'-O-methyleneadenos-5'-yl 2',5'-di-O-methylurid-3'-yl 5'-O-methylurid-3'(2')-yl phosphate (1a,b) have been followed by RP-HPLC over a wide pH range to evaluate the feasibility of occurrence of phosphate-branched RNA under physiological conditions. At pH <2, where the decomposition of is first order in [H3O+], the P-O5' bond is cleaved 1.5 times as rapidly as the P-O3' bond. Under these conditions, the reaction probably proceeds by an attack of the 2'-OH on the phosphotriester monocation. Over a relatively wide range from pH 2 to 5, the hydrolysis is pH-independent, referring to rapid initial deprotonation of the attacking 2'-OH followed by general acid catalyzed departure of the leaving nucleoside. The P-O5' bond is cleaved 3 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first order in [HO-], consistent with an attack of the 2'-oxyanion on neutral phosphate. The product distribution is gradually inversed: in 10 mmol L(-1) aqueous sodium hydroxide, cleavage of the P-O3' bond is favored over P-O5' by a factor of 7.3. The results of the present study suggest that the half-life for the cleavage of under physiological conditions is only 100 s. Even at pH 2, where is most stable, the half-life for its cleavage is less than one hour and the isomerization between and is even more rapid than cleavage. The mechanisms of the partial reactions are discussed.  相似文献   

19.
20.
Yang YY  Xu J  You ZW  Xu XH  Qiu XL  Qing FL 《Organic letters》2007,9(26):5437-5440
3',3'-Difluoro-2'-hydroxymethyl-4',5'-unsaturated carbocyclic nucleosides 1-3 have been stereoselectively synthesized from ester 10, which can be conveniently prepared from 2,3-isopropylidene-d-glyceraldehyde 7 in five steps. The whole synthesis highlighted the stereoselective Reformatskii-Claisen rearrangement, ring-closing metathesis (RCM), and palladium-catalyzed allylic alkylation, in which the regioselectivity was reversed from that of nonfluorinated substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号