首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Au/硫醇/卵磷脂双层膜的制备及其电化学表征   总被引:1,自引:0,他引:1  
生命体系的许多过程发生在生物膜上,生物膜模拟体系的制备与研究一直受到人们的重视.自组装单分子膜(SelfAsembledMonolayers,SAMs)特别是在金基底表面的硫醇单分子膜由于其具有良好的稳定性及有序性,因此在基础理论研究及应用技术等方...  相似文献   

2.
自组装膜的几何厚度与电化学表观有效厚度   总被引:2,自引:0,他引:2  
崔晓莉  李俊新  童汝亭 《电化学》2000,6(4):417-420
根据界面双层电容值可用来判定自组膜的存在 ,也能得到膜的几何厚度 ;但不能说明自组膜的完美程度 .由跨膜电子转移的速度常数 ,可以得到自组膜的电化学表观有效厚度 ,并定量描述非电活性的自组膜 (单分子层膜或双层膜 )中“倒塌”缺陷的程度 .二者数值不同但不矛盾 ,通过计算说明了自组膜中小面积的“倒塌”缺陷决定了跨膜电子转移的速度常数 ,但对自组膜电容的影响不大 .  相似文献   

3.
以铂电极支撑的磷脂双层膜(Supported Bilayer Lipid Membrane,s-BLM)作为生物膜的模型,以Fe(CN)36-和Fe(CN)64-为探针分子,利用循环伏安法(CV)和交流阻抗谱(EIS)研究两性表面活性剂十二烷基磺基甜菜碱(Dodecyl Sulfobetaine,DSB)对s-BLM相互作用。结果显示,DSB可以嵌入到s-BLM的疏水区,容易使其表面分子的排列发生变化,产生缺陷或孔洞,探针分子Fe(CN)63-和Fe(CN)64-可以通过这些微孔接近电极,产生氧化还原响应。并且作用时间、DSB的浓度以及胆固醇的存在与否对二者的相互作用有直接影响。此外作用后的双层膜在0.1mol/LKCl溶液中能够自我修复,这表明DSB与s-BLM的相互作用是可逆的。  相似文献   

4.
采用电化学方法研究胆酸钠(NaC)与s-BLM的相互作用, 并结合实验结果对NaC与s-BLM的作用机理进行了讨论.  相似文献   

5.
以支撑磷脂双层膜(supported bilayer lipid membrane, s-BLM)作为生物膜模型, 采用循环伏安法和交流阻抗技术研究了脱氧胆酸钠(sodium deoxycholate, NaDC)与s-BLM的相互作用. 结果表明, NaDC能降低磷脂分子的有序性, 诱发s-BLM上形成孔洞或缺陷, 并且它们之间的这种相互作用对作用时间、NaDC溶液的浓度和pH值以及胆固醇的存在与否具有依赖性, 并且作用后的s-BLM在0.1 mol/L的KCl溶液中能够自我修复, 这表明NaDC与s-BLM的相互作用是可逆的.  相似文献   

6.
《Electroanalysis》2018,30(2):207-219
Biological membranes are essential parts of living systems. They represent an interface between intracellular and extracellular space. Depending on their structure, they often perform very complex functions and play an important role in the transport of both charged and uncharged particles in any organism. Structure of the biological membranes, which play very important role in electrochemical processes inside living organisms, is very complicated and still not precisely defined and explained. Model lipid membranes are used to gain detail information about properties of real biological membranes and about associated electrochemical processes. Electrochemistry, especially electrochemical impedance spectroscopy (EIS), can play a useful role in the characterization of properties of model lipid membranes (planar and supported lipid bilayers, tethered lipid membranes, liposomes, etc.). This review is focused on model biological membranes and the possibilities and limitations of electrochemical methods and namely of EIS in this field.  相似文献   

7.
Tethered bilayer lipid membranes (tBLMs) have been known as stable and versatile experimental platforms for protein–membrane interaction studies. In this work, the assembly of functional tBLMs on silver substrates and the effect of the molecular chain-length of backfiller molecules on their properties were investigated. The following backfillers 3-mercapto-1-propanol (3M1P), 4-mercapto-1-butanol (4M1B), 6-mercapto-1-hexanol (6M1H), and 9-mercapto-1-nonanol (9M1N) mixed with the molecular anchor WC14 (20-tetradecyloxy-3,6,9,12,15,18,22 heptaoxahexatricontane-1-thiol) were used to form self-assembled monolayers (SAMs) on silver, which influenced a fusion of multilamellar vesicles and the formation of tBLMs. Spectroscopic analysis by SERS and RAIRS has shown that by using different-length backfiller molecules, it is possible to control WC14 anchor molecules orientation on the surface. An introduction of increasingly longer surface backfillers in the mixed SAM may be related to the increasing SAMs molecular order and more vertical orientation of WC14 at both the hydrophilic ethylenoxide segment and the hydrophobic lipid bilayer anchoring alkane chains. Since no clustering of WC14 alkane chains, which is deleterious for tBLM integrity, was observed on dry samples, the suitability of mixed-component SAMs for subsequent tBLM formation was further interrogated by electrochemical impedance spectroscopy (EIS). EIS showed the arrangement of well-insulating tBLMs if 3M1P was used as a backfiller. An increase in the length of the backfiller led to increased defectiveness of tBLMs. Despite variable defectiveness, all tBLMs responded to the pore-forming cholesterol-dependent cytolysin, vaginolysin in a manner consistent with the functional reconstitution of the toxin into phospholipid bilayer. This experiment demonstrates the biological relevance of tBLMs assembled on silver surfaces and indicates their utility as biosensing elements for the detection of pore-forming toxins in liquid samples.  相似文献   

8.
This work describes the characterization of the grafted 2‐benzo[c]cinnoline (2BCC) molecules at a glassy carbon (GC) electrode surface by voltammetry and spectroscopy. Attachment of the molecule to the carbon substrate was achieved by the electrochemical reduction of 2‐benzo[c]cinnoline diazonium salt (2BCC‐DAS). GC electrode modification was carried out in aprotic solution with 2BCC diazonium salt. Dopamine (DA) and ascorbic acid (AA) were used to prove the surface modification to see the blockage of the electron transfer. The presence of 2BCC at the GC electrode surface was characterized by cyclic voltammetry and Raman spectroscopy. Raman spectroscopy was used to monitor molecular bound properties of the adsorbates at the 2BCC‐GC surface and confirm the attachment of 2BCC molecules onto the GC surface. The thickness of the 2BCC film on GC was also investigated by ellipsometric measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号