首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Phenyl-1, 2, 3-triazole-4-formylhydrazine (2) was prepared by hydrazinolysis of the corresponding ester 1. Reaction of 2 with CS2/KOH gave the oxadiazole derivatives (3) which via, Mannich reaction with different dialkyl amines furnished 3-N, N-dialkyl derivatives (4a-c). Also, condensation of 2 with appropriate aromatic acid in POCl3 yielded oxadiazole derivatives (5a-c), or with aldehydes and ketones afforded hydrazones (6a-c). Cyclization of (6a-c) with acetic anhydride gave the desired dihydroxadiazole derivatives (7a-c). On the other hand, reaction of dithiocarbazate (8) with hydrazine hydrate gave the corresponding triazole derivative (9) which on treatment with carboxylic acids in refluxing POCl3 yielded s-triazole[3,4-b]-1, 3, 4-thiadiazole derivatives (10a-b). The structures of all the above compounds were confirmed by means of IR, 1H NMR, MS and elemental analysis.  相似文献   

2.

Nicotinic acid esters 3a–c were prepared by the reaction of pyridine-2(1H)-thione derivative 1 with α-halo-reagents 2a–c. Compounds 3a–c underwent cyclization to the corresponding thieno[2, 3-b]pyridines 4a–c via boiling in ethanol/piperidine solution. Compounds 4a–c condensed with dimethylformamide-dimethylacetal (DMF-DMA) to afford 3-{[(N,N-dimethylamino)methylene]amino}thieno[2, 3-b]- pyridine derivatives 6a–c. Moreover, compounds 4a–c and 6a–c reacted with different reagents and afforded the pyrido[3′,2′:4, 5]thieno[3, 2-d]pyrimidine derivatives 10a–d, 11a–c, 12a,b, 14a,b, 17, and 19. In addition, pyrazolo[3, 4-b]pyridine derivative 20 (formed via the reaction of 1 with hydrazine hydrate) reacted with ethylisothiocyanate yielded the thiourea derivative 21. Compound 21 reacted with α-halocarbonyl compounds to give the 3-[(3H-thiazol-2-ylidene)amino]-1H-pyrazolo[3, 4-b]pyridine derivatives 23a–c, 25, and 27a,b.  相似文献   

3.
Nitration of 2,3-dihydrofuro[3,2-b]- N-oxide 3b and -[2,3-c]pyridine N-oxide 3c afforded the nitropyridine compounds 4b, 5b and 6 from 3b and 4c, 5c, 5′c and 7 from 3c , while -[2,3-b]- N-oxide 3a and -[3,2-c]pyridine N-oxide 3d did not give the nitro compound. Chlorination of 3b and 3c with phosphorus oxychloride yielded mainly the chloropyridine derivatives 15b, 15′b from 3b and 15c and 15′c from 3c , whereas 3a and 3d gave pyridine derivatives formed through fission of the 1–2 ether bond of the furo-pyridines 13a , 14 and 13d . Acetoxylation of 3b and 3c gave 3-acetoxy derivatives 18b and 18c and the parent compound 1b and 1c . Acetoxylation of 3a yielded compounds formed through fission of the 1–2 bond 16 and 17 and 3d gave furopyridones 19 and 19 ′. Cyanation of 3b and 3c yielded mainly the cyanopyridine compounds 20b, 20c and 20′c . Cyanation of 3a and 3d gave the cyanopyridine compounds 20a , 20d and 20′d accompanying formation of the pyridine derivatives 21a, 21d and 21′d .  相似文献   

4.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

5.
Chitosan ( 1 ) was prepared by basic hydrolysis of chitin of an average molecular weight of 70000 Da, 1H‐NMR spectra indicating almost complete deacetylation. N‐Phthaloylation of 1 yielded the known N‐phthaloylchitosan ( 2 ), which was tritylated to provide 3a and methoxytritylated to 3b . Dephthaloylation of 3a with NH2NH2?H2O gave the 6‐O‐tritylated chitosan 4a . Similarly, 3b gave the 6‐O‐methoxytritylated 4b . CuSO4‐Catalyzed diazo transfer to 4a yielded 95% of the azide 5a , and uncatalyzed diazo transfer to 4b gave 82% of azide 5b . Further treatment of 5a with CuSO4 produced 2‐azido‐2‐deoxycellulose ( 7 ). Demethoxytritylation of 5b in HCOOH gave 2‐azido‐2‐deoxy‐3,6‐di‐O‐formylcellulose ( 6 ), which was deformylated to 7 . The 1,3‐dipolar cycloaddition of 7 to a range of phenyl‐, (phenyl)alkyl‐, and alkyl‐monosubstituted alkynes in DMSO in the presence of CuI gave the 1,2,3‐triazoles 8 – 15 in high yields.  相似文献   

6.
A copper‐catalyzed reaction of propargyl 4,6‐di‐O‐acetyl‐2,3‐dideoxy‐α‐Derythro‐hex‐2‐enopyranoside with 3(4‐azidophenyl)‐1,2,4‐oxadiazoles gave the corresponding hexenopyranosides bearing an 1,2,4‐oxadiazole subunit in the aglyconic part of the molecule. The same reaction between ethyl 4‐azido‐2,3,4‐trideoxy‐α‐Derythro‐hex‐2‐enopyranoside and acetylenic 1,2,4‐oxadiazoles afforded the corresponding hexenopyranosides carrying a triazole and a 1,2,4‐oxadiazole ring at C‐4 of the carbohydrate. Combination of the two sequences gave hexenopyranosides displaying two 1,2,4‐oxadiazole subunits, each one being embedded in the C‐1 and C‐4 frameworks, of the carbohydrate moiety. A simple dihydroxylation reaction of these unsaturated carbohydrates yielded a series of mannopyranosides bearing one or two 1,2,4‐oxadiazole subunits at C‐1 or C‐4. These new compounds were evaluated for their cytotoxic activities against two cell strains: NCI‐H292 (lung carcinoma) and Hep‐2 (larynx carcinoma), some of them presenting impressive cell growth inhibitions.  相似文献   

7.
The reactions of 5‐benzylidene‐3‐phenylrhodanine ( 2 ; rhodanine=2‐thioxo‐1,3‐thiazolidin‐4‐one) with diazomethane ( 7a ) and phenyldiazomethane ( 7b ) occurred chemoselectively at the exocyclic C?C bond to give the spirocyclopropane derivatives 9 and, in the case of 7a , also the C‐methylated products 8 (Scheme 1). In contrast, diphenyldiazomethane ( 7c ) reacted exclusively with the C?S group leading to the 2‐(diphenylmethylidene)‐1,3‐thiazolidine 11 via [2+3] cycloaddition and a ‘two‐fold extrusion reaction’. Treatment of 8 or 9b with an excess of 7a in refluxing CH2Cl2 and in THF at room temperature in the presence of [Rh2(OAc)4], respectively, led to the 1,3‐thiazolidine‐2,4‐diones 15 and 20 , respectively, i.e., the products of the hydrolysis of the intermediate thiocarbonyl ylide. On the other hand, the reactions with 7b and 7c in boiling toluene yielded the corresponding 2‐methylidene derivatives 16, 21a , and 21b . Finally, the reaction of 11 with 7a occurred exclusively at the electron‐poor C?C bond, which is conjugated with the C?O group. In addition to the spirocyclopropane 23 , the C‐methylated 22 was formed as a minor product. The structures of the products (Z)‐ 8, 9a, 9b, 11 , and 23 were established by X‐ray crystallography.  相似文献   

8.
The 2‐thienyl‐substituted 4,5‐dihydrofuran derivatives 3 – 8 were obtained by the radical cyclization reaction of 1,3‐dicarbonyl compounds 1a – 1f with 2‐thienyl‐substituted conjugated alkenes 2a – 2e by using [Mn(OAc)3] (Tables 15). In this study, reactions of 1,3‐dicarbonyl compounds 1a – 1e with alkenes 2a – 2c gave 4,5‐dihydrofuran derivatives 3 – 5 in high yields (Tables 13). Also the cyclic alkenes 2d and 2e gave the dihydrobenzofuran compounds, i.e., 6 and 7 in good yields (Table 4). Interestingly, the reaction of benzoylacetone (=1‐phenylbutane‐1,3‐dione; 1f ) with some alkenes gave two products due to generation of two stable carbocation intermediates (Table 5).  相似文献   

9.
Summary The reaction of 3-iodo-4-methoxy-2(1H)-quinolinone (1) and 3-iodo-4,6,8-trimethoxy-2(1H)-quinolinone (2) with 2-methyl-3-butyn-2-ol under modified Heck-conditions gave the 2-substituted derivatives 2-(1-hydroxy-1-methylethyl)-4-methoxyfuro[2,3-b]-quinoline (3) and 2-(1-hydroxy-1-methylethyl-4,6,8-trimethoxyfuro[2,3-b]-quinoline (4). By a subsequent hydrogenation-reaction with a homogeneous catalyst (PtO2/Rh2O3), the furoquinoline-derivatives yielded the dihydrofuro-[2,3-b]quinolines, identified as 2-(1-hydroxy-1-methylethyl-4-methoxy-2,3-dihydrofuro[2,3-b]quinoline (5) (racemic platydesmine) and 2-(1-hydroxy-1-methylethyl)-4,6,8-trimethoxy-2,3-dihydrofuro-[2,3-b]quinoline (6) (racemic precursor of O4-methylptelefolonium salt).
  相似文献   

10.
Bicyclic azulene compounds, ethyl 4-(cyanoethoxycarbonylmethyl)-2-methylazulene-1-carboxylate (2) and ethyl 4-(cyanoethoxycarbonylmethyl)azulene-1-carboxylate (3) were prepared from ethyl 4-chloro-2-methylazulene-1-carboxylate (7) and ethyl 4-ethoxyazulene-1-carboxylate (8), respectively. Oxidation of 2 with DDQ gave the title compound, 5-cyano-4-ethoxy-1-ethoxycarbonyl-2-methylazuleno[1,8-b,c]pyran (1) and a minor compound, ethyl 4-cyanomethyl-2-methylazulene-1-carboxylate (9). Oxidation of 3 by DDQ produced only ethyl 4-cyanomethylazulene-1-carboxylate (10), Reaction of 1 with 100% H3PO4 at room temperature and 100 °C gave 5-cyano-4-ethoxy-2-methylazuleno[1,8-b,c]pyran (11) and 2-methyl-4,5-dihydrozuleno[1,8-b,c]pyran-4-one (12), respectively. All the new compounds were characterized by IR, UV-vis, NMR and Mass spectra, and the structure of 1 was determined by X-ray crystallography. Crystal data for 1; space group P21/n, a = 7.391(1), b = 9.660(5), c = 22.859(1) Å, B = 97.01(1)°, V = 1620.0(3) Å3, Z = 4, with final residuals R = 0.047 and Rw = 0.055.  相似文献   

11.
The oxidative cyclization reactions of 1,3‐dicarbonyl compounds 1a – 1c and α,β‐unsaturated alcohols 2a – 2f with Mn(OAc)3 were performed, leading to dihydrofurans. Treatment of 1a and 1b with 2‐methylbut‐3‐en‐2‐ol ( 2a ) gave dihydrofurans 3aa and 3ba , and dihydropyrans 4aa and 4ba , as unexpected products. While the reaction of 2‐methylbut‐3‐yn‐2‐ol ( 2b ) with acetylacetone ( 1b ) yielded a bifuran, ethyl acetoacetate ( 1a ) led to a mixture of furan, bifuran, and salicylate derivatives. Besides, surprisingly, styryl‐substituted dihydrofurans were obtained from the reactions of 1,3‐dicarbonyl compounds and (3E)‐2,4‐diphenylbut‐3‐en‐2‐ol. The reaction mechanisms were proposed for the formation of the different products, considering intermediates in these reaction mixtures.  相似文献   

12.
Some condensation reactions of salicylaldehyde with various conjugated olefins, 1a, 1b, 1c, 2a, 2b, 2c , and 3 , were studied. In the condensations with 1a, 1b , and 1c gave 2,2-dimethyl-2H-chromene derivatives via “3–2 cyclization”, while the condensations with 2a, 2b, 2c , and 3 gave 2-methyl-2H-chromen-2-yl)acetic acid derivatives via “3–4 cyclization”.  相似文献   

13.
Thiation of 1 by LR gave the corresponding 3,5‐dithioxo derivative 2 and the trimer 3 . Methylation of 1 afforded the S‐methyl derivative 4 . Compound 1 was fused with 6‐bromo‐2‐phenyl‐benzo[1,3‐d]oxazin‐4‐one ( 5 ) and gave 6 . Condensation of 1 with some acid derivatives 7a , 7b , 7c , 7d and/or 8a , 8b , 8c yielded thiadiazolo‐triazine derivatives 9a , 9b , 9c , 9d and 10a , 10b , 10c . Compounds 9a , 9c and 10c were hydrolyzed to furnish 11a , 11b , 11c Acetylation of 14 afforded mono‐ and diacetyl‐derivatives 15 and 16 . Benzoylation of 14 afforded mono‐ and dibezoyl‐derivatives 17 and 18 . 14 with some aromatic aldehydes yielded 9a , 9b , 9c . Reacting 14 with phenyl (iso‐ and/or isothio‐) cyanate gave the urea derivatives 20a , 20b . Thiation of 14 with P4S10 furnished 21 . The newly synthesized compounds were tested as antimicrobial agents. J. Heterocyclic Chem., (2011)  相似文献   

14.
Two efficient methods for the preparation of 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 3 under mild conditions have been developed. The first method is based on the reaction of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoates 1a – 1c with thiols in the presence of Et3N in THF at room temperature, leading to the corresponding dithiocarbamate intermediates 2 , which underwent spontaneous cyclization at the same temperature by an attack of the S‐atom at the prop‐2‐enoyl moiety in a 1,4‐addition manner (Michael addition) to give 2‐(2‐sulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetates in one pot. The second method involves treatment of 3‐(2‐isothiocyanatophenyl)prop‐2‐enoic acid derivatives 1b – 1d with Na2S leading to the formation of 2‐(2‐sodiosulfanyl‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid intermediates 5 by a similar addition/cyclization sequence, which are then allowed to react with alkyl or aryl halides to afford derivatives 3 . 2‐(2‐Thioxo‐4H‐3,1‐benzothiazin‐4‐yl)acetic acid derivatives 6 can be obtained by omitting the addition of halides.  相似文献   

15.
This paper describes the preparation and hydrolysis of 2-cyano and 3-cyano derivatives of furo[3,2-b]-, furo[2,3-c]- and furo[3,2-c]pyridine. Treatment of furopyridines 1a , 1b and 1c with n-butyllithium in hexane-tetrahydrofuran at -70° and subsequent addition of N,N-dimethylformamide yielded 2-formyl derivatives 2a , 2b and 2c. Dehydration of the oximes 4a , 4b and 4c of 2a , 2b and 2c gave 2-cyano compounds 5a , 5b and 5c , which were hydrolyzed to give 2-carboxylic acids, 6a, 6b and 6c , respectively. Reaction of 3-bromo compounds 7a , 7b and 7c with copper(I) cyanide in N,N-dimethylformamide afforded 3-cyano derivatives 8a , 8b and 8c. Alkaline hydrolysis of 8a , 8b and 8c gave compounds formed by fission of the 1-2 bond of furopyridines 9a , 9b and 9c , while acidic hydrolysis gave the corresponding carboxamides, 10a , 10b and 10c.  相似文献   

16.
Syntheses of New N-Vinylpyrroles The reactions of pyrrolyl potassium ( 1 ) with (ethoxymethylene)malonic acid derivatives 2a–e yielded the carbanions 3a–e , which could be hydrolyzed to 4a–e , but with the exception of 4b they were not isolated, because a transformation to the N-vinylpyrroles 5a , c–e by elimination of ethanol took place; 1 reacted with 2b at 80°C to give 4b and 6 . Hydrolysis of 4b with KOH yielded 4g , which eliminated 1 mol of ethanol to form 5f , decarboxylation of which led to N-vinylpyrrole 7 . By cyclization of 5e under various conditions the pyrrolizines 8a , b are obtained, the hydrolysis of which did not give ketone 9 but only amino alcohol 10 . Some other cyclizations of 11a–c and 13 yielded the 3H-pyrrolizine derivatives 12a–c and 14 , respectively.  相似文献   

17.
Several new pyridine derivatives were prepared via reaction of enaminoketones 1a , 1b , 1c , 1d with active hydrogen reagents. Reaction of the enaminoketones 1a , 1b , 1c with 4‐acetyl‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one 2a yielded the pyridines 3a , 3b , 3c . Condensation of the enaminonitrile 1d with compounds 2b , 2c , 2d and compound 8 gave the pyridine derivatives 6a , 6b , 6c and 10 respectively. Also, (3‐(dimethylamino)acryloyl)‐2H‐chromen‐2‐one 1a reacted with active methylenes in diethyl 3‐oxopentanedioate 12 and 4‐methyl‐6‐oxo‐2‐thioxo‐1,2,5,6‐tetrahydropyridine‐3‐carbonitrile 15 to afford the pyridine derivatives 14 and 16 respectively.  相似文献   

18.
Bromination of 3-bromofuro[2,3-b]- 1a , -[3,2-b]- 1b and - [3,2-c]pyridine 1d afforded the 2,3-dibromo derivatives 2a, 2b and 2d , while the -[2,3-c]- compound 1c did not give the dibromo derivative. Nitration of 1a-d gave the 2-nitro-3-bromo compounds 3a-d . The N-oxides 4a-d of 1a-d were submitted to the cyanation with trimethylsilyl cyanide to yield the corresponding α-cyanopyridine compound 6a-d . Chlorination of 4a and 4d with phosphorus oxychloride gave mainly the chloropyridine derivatives 7a, 7′a and 7d , while 4b and 4c gave mainly the chlorofuran derivatives 7′b and 7′c accompanying formation of the chloropyridine derivatives 7b, 7′b and 7c . Acetoxylation of 4a and 4b with acetic anhydride yielded the acetoxypyridine compounds 8a, 8′a and 8b , while 4c and 4d gave the acetoxypyridine 8′c, 8′d and 8′d , pyridone 8c and 8d , acetoxyfuran 8′c and dibromo compound 9c and 9′c.  相似文献   

19.
A protocol for the synthesis of 3-[4-(1-benzofuran-2-yl)-1,3-thiazol-2-yl]-2-(4-aryl)-1,3-thiazolidin-4-one derivatives (5a–e) has been developed from 1-(1-benzofuran-2-yl)-2-bromoethanone (2),which served as a key intermediate for the synthesis of the title compounds. The reaction of compound 2 with thiourea furnished 4-(1-benzofuran-2-yl)-1,3-thiazol-2-amine 3, which upon further reaction with various aromatic aldehydes, gave Schiff bases 4a–e. These Schiff bases, when treated with thioacetic acid in the presence of catalytic amount of anhydrous ZnCl2, yielded thiazolidinone derivatives 5a–e. All the newly synthesized compounds have been characterized by analytical and spectral data and screened for their antimicrobial and analgesic activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

20.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号