首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intramolecular 1,3-Dipolar Cycloadditions of Diaryl-nitrile-imines Generated from 2,5-Diaryl-tetrazoles Alkenyl-substituted diaryl-nitrile-imines – generated by photolysis or thermolysis of alkenyl-substituted 2,5-diaryl-tetrazoles - undergo a regioselective intramolecular [2 + 3] cycloaddition to yield new heterocyclic compounds, e. g. fused 2-pyrazolines. With alkinyl derivatives, the corresponding pyrazoles have been formed. UV evidence is given for the intermediate nitrile-imine at ? 190°. The latter can be trapped using an excess of carboxylic acid (UV evidence for a new intermediate at ? 120°). In this case, the corresponding rearranged addition product N′-acyl-N′-aryl-benzohydrazide is isolated in good yield.  相似文献   

2.
A series of 3-substituted aminoimidazo[1,5-a]pyridine derivatives have been synthesized by cyclodesulfurization of a variety of N′-substituted-N-(2-pyridylmethyl)thioureas with dicyclohexylcarbodiimide (DCCD). 1H Nmr spectral analysis of all synthesized compounds is given.  相似文献   

3.
In a search for new insect growth regulators with unusual biological properties and different activity spectrum, we thought that the preservation of the bioactive unit and the introduction of 2‐methyl‐3‐(triphenylgermanyl)propoxycarbonyl in Ntert‐butyl‐N,N′‐dibenzoylhydrazine would enhance their larvicidal activities to a significant degree. Therefore, we designed and synthesized N′‐tert‐butyl‐N′‐[2‐methyl‐3‐(triphenylgermanyl)propoxycarbonyl]‐N‐benzoylhydrazine and analogs by two procedures. These novel compounds were characterized by elemental analyses, IR, and 1H NMR. At the same time, Ntert‐butyl‐N‐substitutedbenzoylhydrazines were prepared by a new method, and some reactions involved were studied. The preliminary results indicate that some compounds have inhibitory effects against plant pathogenetic bacteria such as early blight of tomato. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Photochromic 2-(N-acyl-N-arylaminomethylene)benzo[b]thiophen-3(2H)-ones containing ortho-substituents in the N-phenyl ring were studied by X-ray diffraction analysis and 1H NMR spectroscopy. It was established that these compounds have stable chiral structures due to hindered rotation of the phenyl ring around the C—N bond. The energy barrier to racemization evaluated by dynamic NMR spectroscopy is G # 428 K = 98 kJ mol–1.  相似文献   

5.
Polypyridyl multidentate ligands based on ethylenediamine backbones are important metal‐binding agents with applications in biomimetics and homogeneous catalysis. The seemingly hexadentate tpena ligand [systematic name: N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetate] reacts with zinc chloride and zinc bromide to form trichlorido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2(C22H24N5O2)Cl3], and tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dizinc(II), [Zn2Br3(C22H24N5O2)]. One ZnII ion shows the anticipated N5O coordination in an irregular six‐coordinate site and is linked by an anti carboxylate bridge to a tetrahedral ZnX3 (X = Cl or Br) unit. In contrast, the CuII ions in aquatribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–tribromido[μ‐N,N,N′‐tris(pyridin‐2‐ylmethyl)ethylenediamine‐N′‐acetato]dicopper(II)–water (1/1/6.5) [Cu2Br3(C22H24N5O2)][Cu2Br3(C22H24N5O2)(H2O)]·6.5H2O, occupy two tpena‐chelated sites, one a trigonal bipyramidal N3Cl2 site and the other a square‐planar N2OCl site. In all three cases, electrospray ionization mass spectra were dominated by a misleading ion assignable to [M(tpena)]+ (M = Zn2+ and Cu2+).  相似文献   

6.
Three symmetric N,N-diarylformamidine dithiocarbamates, N,N′-bis(2,6-dimethylphenyl)formamidine dithiocarbamate (DTL1), N,N′-bis(2,6-disopropylphenyl)formamidine dithiocarbamate (DTL2) and N,N′-dimesitylformamidine dithiocarbamate (DTL3), and three unsymmetric ones, N′-(2,6-dichlorophenyl-N-(2,6-dimethylphenyl)formamidine dithiocarbamate (DTL4), N′-(2,6-dichlorophenyl)-N-(2,6-diisopropylphenyl)formamidine dithiocarbamate (DTL5) and N′-(2,6-dichlorophenyl)-N-mesitylformamidine dithiocarbamate (DLT6), were reacted with chloridocobalt(III) in water to give Co-(DTL1)3 ( 1 ), Co-(DTL2)3 ( 2 ), Co-(DTL3)3 ( 3 ), Co-(DTL4)3 ( 4 ), Co-(DTL5)3 ( 5 ) and Co-(DTL6)3 ( 6 ). All the dithiocarbamates and complexes were characterized using 1H NMR, 13C NMR, Fourier transform infrared, UV–visible and mass spectra and the purity confirmed by elemental analysis. In addition, crystal structures of complexes 1 , 2 , 4 and 5 were determined, confirming the formation of mononuclear species in which the Co(III) centers coordinated to six sulfur atoms from three dithiocarbamate ligands resulting in distorted octahedral geometries. All complexes showed moderate to good antibacterial activities against Gram-negative bacteria Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae and Pseudomonas aeruginosa even at low concentrations. None of the six were active against Gram-positive bacterium methicillin-resistant Staphylococcus aureus and only active against S. aureus at high concentrations. Complexes 5 and 6 were found to be more active than ciprofloxacin against S. typhimurium, E. coli, P. aeruginosa and K. pneumoniae and complexes with chloro-substituted ligands generally had enhanced activities. Antioxidant activities of the dithiocarbamate salts and their Co(III) complexes were also investigated using DPPH assay and the complexes were found to be more efficient. Complex 2 with an IC50 value of 2.84 × 10−4 mM displayed the highest activity of all compounds tested, even outdoing ascorbic acid. The radical scavenging ability of the complexes followed the order 2 > 1 > ascorbic acid > 3 > 4 > 6 > 5 .  相似文献   

7.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

8.
Reaction of N′-acyl-N,N-dimethylamidines with hydrogen sulfide in acetic acid gave N-thioacylbenzarmides in almost quantitative yields. S-Ethylation of the N-thioacylbenzamides with iodoethane gave N-aroylthio-imidates in excellent yields. Reaction of the N-aroylthioimidates with acetamidine, benzamidine, or guanidine in ethanol gave s-triazines in 60–93% yield.  相似文献   

9.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   

10.
A general method for the synthesis of so far unknown nonsymmetrically substituted N‐aryl‐N′‐aryl′‐4,4′‐bipyridinium salts is presented (Scheme 1). The common intermediate in all procedures is N‐(2,4‐dinitrophenyl)‐4,4′‐bipyridinium hexafluorophosphate ( 1 ⋅ ). For the synthesis of nonsymmetric arylviologens, 1 ⋅ was arenamine‐exchanged by the Zincke reaction, and then activated at the second bipyridine N‐atom with 2,4‐dinitrophenyl 4‐methylbenzenesulfonate. The detailed preparation of the six N‐aryl‐N′‐aryl′‐viologens 21 – 26 is discussed (Scheme 2). The generality of the procedure is further exemplified by the synthesis of two nonsymmetrically substituted N‐aryl‐N′‐benzyl‐ (see 11 and 12 ), and seven N‐aryl‐N′‐alkyl‐4,4′‐bipyridinium salts (see 28 – 34 ) including substituents with metal oxide anchoring and redox tuning properties. The need for these compounds and their usage as electrochromic materials, in dendrimer synthesis, in molecular electronics, and in tunable‐redox mediators is briefly discussed. The latter adjustable property is demonstrated by the reduction potential measured by cyclic voltammetry on selected compounds (Table).  相似文献   

11.
Procedures are described for the preparation of various bidentate and potentially tridentate chelating agents. These incorporate pyridyl, benzimidazole, imidazole or phenolic moieties. Phillips condensations of carboxylic acids with o-phenylenediamines were carried out in 4 M hydrochloric acid. Syntheses are reported for 2, 6-bis(N′-methylimidazol-2′-ylthiomethyl)pyridine, 2, 6-bis(benzimidazol-2′-ylthiomethyl)pyridine, 2-(4′-piperidyl)benzimidazole, 2-(3′-piperidyl)benzimidazole, 2-(3-N′-methylpiperidyl)benziinidazole, 2-(3-N′-methylpiperidyl)-N-methylbenzimidazole, 2-(2′-hydroxybenzyl)benzimidazole and 2-(2′-hydroxyben-zyl)N-methylbenzimidazole. The compounds were characterized where appropriate by their mass, uv, and 1H-nmr spectra. 2-(2′-Hydroxybenzyl)benzimidazole hydrochloride acts as a gelling agent in aqueous solution.  相似文献   

12.
A new family of nickel(II) complexes of the type [Ni(L)(CH3CN)](BPh4)2, where L=N‐methyl‐N,N′,N′‐tris(pyrid‐2‐ylmethyl)‐ethylenediamine (L1, 1 ), N‐benzyl‐N,N′,N′‐tris(pyrid‐2‐yl‐methyl)‐ethylenediamine (L2, 2 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(6‐methyl‐pyrid‐2‐yl‐methyl)‐ethylenediamine (L3, 3 ), N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐(quinolin‐2‐ylmethyl)‐ethylenediamine (L4, 4 ), and N‐methyl‐N,N′‐bis(pyrid‐2‐ylmethyl)‐N′‐imidazole‐2‐ylmethyl)‐ethylenediamine (L5, 5 ), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single‐crystal X‐ray structure of [Ni(L3)(CH3CN)](BPh4)2 reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one‐electron oxidation corresponding to the NiII/NiIII redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m‐CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1–10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH3CN)](BPh4)2 by the strongly σ‐bonding but weakly π‐bonding imidazolylmethyl arm as in [Ni(L5)(CH3CN)](BPh4)2 or the sterically demanding 6‐methylpyridylmethyl ([Ni(L3)(CH3CN)](BPh4)2 and the quinolylmethyl arms ([Ni(L4)(CH3CN)](BPh4)2, both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin‐state reactivity for the high‐spin [(N5)NiII?O.] intermediate (ts1hs, ts2doublet), which has a low‐spin state located closely in energy to the high‐spin state. The lower catalytic activity of complex 5 is mainly due to the formation of thermodynamically less accessible m‐CPBA‐coordinated precursor of [NiII(L5)(OOCOC6H4Cl)]+ ( 5 a ). Adamantane is oxidized to 1‐adamantanol, 2‐adamantanol, and 2‐adamantanone (3°/2°, 10.6–11.5), and cumene is selectively oxidized to 2‐phenyl‐2‐propanol. The incorporation of sterically hindering pyridylmethyl and quinolylmethyl donor ligands around the NiII leads to a high 3°/2° bond selectivity for adamantane oxidation, which is in contrast to the lower cyclohexane oxidation activities of the complexes.  相似文献   

13.
The design and synthesis of polymeric coordination compounds of 3d transition metals are of great interest in the search for functional materials. The coordination chemistry of the copper(II) ion is of interest currently due to potential applications in the areas of molecular biology and magnetochemistry. A novel coordination polymer of CuII with bridging N,N′‐bis(2‐hydroxyphenyl)‐2,2‐dimethylpropane‐1,3‐diamine (H2L‐DM) and dicyanamide (dca) ligands, catena‐poly[[[μ2‐2,2‐dimethyl‐N,N′‐bis(2‐oxidobenzylidene)propane‐1,3‐diamine‐1:2κ6O,N,N′,O′:O,O′]dicopper(II)]‐di‐μ‐dicyanamido‐1:2′κ2N1:N5;2:1′κ2N1:N5], [Cu2(C19H20N2O2)(C2N3)2]n, has been synthesized and characterized by CHN elemental analysis, IR spectroscopy, thermal analysis and X‐ray single‐crystal diffraction analysis. Structural studies show that the CuII centres in the dimeric asymmetric unit adopt distorted square‐pyramidal geometries, as confirmed by the Addison parameter (τ) values. The chelating characteristics of the L‐DM2− ligand results in the formation of a CuII dimer with a double phenolate bridge in the asymmetric unit. In the crystal, the dimeric units are further linked to adjacent dimeric units through μ1,5‐dca bridges to produce one‐dimensional polymeric chains.  相似文献   

14.
A H2O/MeOH extract of the pollen of Hippeastrum x hortorum (Amaryllidaceae) was analyzed. A mixture of different compounds (at the most 84) was found, namely the geometrically ((E,E), (E,Z), (Z,E), and (Z,Z) and structurally isomeric N,N′-dicoumaroyl (=N,N′-bis[3-(4-hydroxyphenyl)prop-2-enoyl]), N,N′-diferuloyl (=N,N′-bis[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]), N,N′-disinapoyl (=N,N′-bis[3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoyl]), N-coumaroyl-N′-feruloyl, and N-feruloyl-N′-sinapoyl derivatives of spermidine (=4-azaoctane-1,8-diamine=N-(3-aminopropyl)butane-1,4-diamine). Their structures were proven by using on-line-coupled high-performance liquid chromatography and atmospheric-pressure chemical-ionization mass spectrometry (HPLC-UV(DAD)/APCI-MS and MS/MS), UV-induced (E)⇌(Z) photoisomerization, and catalytic hydrogenation, as well by comparing their spectra and chromatographic behavior with those of synthetic standards. According to the physicochemical properties of these natural compounds, a proposed biological function is discussed.  相似文献   

15.
N,N′‐Pyromelliticdiimido‐di‐L ‐alanine ( 1 ), N,N′‐pyromelliticdiimido‐di‐L ‐phenylalanine ( 2 ), and N,N′‐pyromelliticdiimido‐di‐L ‐leucine ( 3 ) were prepared from the reaction of pyromellitic dianhydride with corresponding L ‐amino acids in a mixture of glacial acetic acid and pyridine solution (3/2 ratio) under refluxing conditions. The microwave‐assisted polycondensation of the corresponding diimide‐diacyl chloride monomers ( 5–7 ) with 4‐phenyl‐2,6‐bis(4‐aminophenyl) pyridine ( 10 ) or 4‐(p‐methylthiophenyl)‐2,6‐bis(4‐aminophenyl) pyridine ( 12 ) were carried out in a laboratory microwave oven. The resulting poly(amide‐imide)s were obtained in quantitative yields, and they showed admirable inherent viscosities (0.12–0.55 dlg?1), were soluble in polar aprotic solvents, showed good thermal stability and high optical purity. The synthetic compounds were characterized by IR, MS, 1H NMR, and 13C NMR spectroscopy, elemental analysis, and specific rotation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A series of quinazoline derivatives were synthesized via the cyclization of N, N′–disubstituted thiourea derivatives in the mixed solvent of acetontrile and aqueous NaOH by ultraviolet light irradiation. All the compounds are characterized by IR, 1HNMR, 13CNMR, MS, and element analysis. The absolute configurations of 3a was determined by X‐ray crystallography.  相似文献   

17.
Mononuclear nickel(II) complexes were prepared by reaction of the three ONNO type reduced Schiff bases bis‐N,N′‐(2‐hydroxybenzyl)‐1,3‐propanediamine (LHH2), bis‐N,N′‐(2‐hydroxybenzyl)‐2,2′‐dimethyl‐1,3‐propanediamine (LDMHH2), and bis‐N,N′‐[1‐(2‐hydroxyphenyl)ethyl]‐1,3‐propanediamine (LACHH2) with NiII ions in the presence of pseudo halides (OCN, SCN and N3). The complexes were characterized with the use of elemental analyses, IR spectroscopy, and thermal analyses. The molecular structure of one of the complexes was obtained by single‐crystal X‐ray diffraction. The obtained complexes are mononuclear, and a pseudo halide molecule is attached. One of the oxygen atoms of the ligand is in phenolate and the other was in phenol form. According to the thermogravimetry results, it was thought that the pseudo halide thermally detaches from the structure as hydropseudo halide. In azide‐containing complexes an endothermic reaction was observed although the azide group usually decomposes with an exothermic reaction.  相似文献   

18.
The synthesis of three novel pyrazole-containing complexing acids, N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]-4-methoxypyridine}tetrakis(acetic acid)( 1 ), N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-1-yl]pyrazine}-tetrakis(acetic acid) ( 2 ), and N,N,N′,N′-{6, 6′-bis[3-(aminomethyl)pyrazol-1-yl]-2, 2′-bipyridine}tetrakis(acetic acid) ( 3 ) is described. Ligands 1–3 formed stable complexes with EuIII, TbIII, SmIII, and DyIII in H2O whose relative luminescence yields, triplet-state energies, and emission decay lifetimes were measured. The number of H2O molecules in the first coordination sphere of the lanthanide ion were also determined. Comparison of data from the EuIII and TbIII complexes of 1–3 and those of the parent trisheterocycle N,N,N′,N′-{2, 6-bis[3-(aminomethyl)pyrazol-l-yl]pyridine}tetrakis(acetic acid) showed that the modification of the pyridine ring for pyrazine or 2, 2′-bipyridine strongly modify the luminescence properties of the complexes. MeO Substitution at C(4) of 1 maintain the excellent properties described for the parent compound and give an additional functional group that will serve for attaching the label to biomolecules in bioaffinity applications.  相似文献   

19.
The compounds 5,6‐dihydro‐4H‐imidazo[4,5‐c][1,2,5]oxadiazole ( 3a , R?H), 4,6,10,12‐tetramethyl‐5,6,11,12‐tetrahydro‐4H,10H‐bis(1,2,5)oxadiazolo[3,4‐d:3′,4′‐I][1,3,6,8]tetraazecine ( 4b , R?CH3), N3,N3′‐methylenebis‐3,4‐diamino‐1,2,5‐oxadiazole ( 5a , R?H) and N3,N3′‐methylenebis(N,N′‐dimethyl‐3,4‐diamino‐1,2,5‐oxadiazolee) ( 5b , R?CH3) were synthesized from the reaction of formaldehyde with 3,4‐diamino‐1,2,5‐oxadiazole and N,N′‐3,4‐dimethylamino‐1,2,5‐oxadiazole in an acetonitrile.  相似文献   

20.
The covalent triazine‐based framework (TDPDB) has been prepared by Friedel‐Crafts polymerization reaction of N,N′‐diphenyl‐N,N′‐di(m‐tolyl)benzidine (DPDB) with 2,4,6‐trichloro‐1,3,5‐triazine (TCT) catalyzed by methanesulfonic acid. The yield of the reaction (94.85%) is very high. TDPDB was provided with Brunauer‐Emmett‐Teller specific surface area of 592.18 m2 g?1 and pore volume of 0.5241 cm3 g?1. TDPDB demonstrated an excellent capacity for capturing iodine (3.93 g g?1) and an outstanding ability to fluorescent sensing to iodine with Ksv of 5.83 × 104 L mol?1. It also showed high fluorescent sensing sensitivity to picric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号