首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we demonstrate the synthesis of telechelics with different spacer units and different numbers of metal-complexing units, like α-methoxy-ω-(2,2′:6′,2″-terpyrid-4′-yl)-poly(ethylenoxide)78 ( 1 ), bis(2,2′:6′,2″-terpyrid-4′-yl) di(ethylene glycol) ( 2 ), bis(2,2′:6′,2″-terpyrid-4′-yl)-poly(ethylene oxide)180 ( 3 ) and tris[(2,2′:6′,2″-terpyrid-4′-yl)-oligo (ethylenoxy-)3.33]glycerin ( 4 ) utilizing 4-chloro-2,2′:6′,2″-terpyridine. The complexation behaviour of a variety of metal-salts towards the telechelics was studied and different supramolecular architectures were investigated, such as symmetric polymeric complexes and linear coordination polymers. Furthermore, attempts have been undertaken to prepare metallo-supramolecular cross-linked systems.  相似文献   

2.
Bis(5,5″-bis(bromomethyl)-2,2′:6′,2″-terpyridine), bis-4′-(4-bromomethylphenyl)-2,2′:6′,2″-terpyridine and 4-hydroxymethyl-5′,5″-dimethyl-2,2′:6′,2″-terpyridine metal complexes have been used as initiators for the living polymerization of 2-oxazolines and L-lactides. In both cases polymers with controlled molecular weights and narrow molecular weight distributions have been obtained. In-line diode array GPC measurements of iron(II) complexed poly(ethyloxazoline)s showed an unexpected absence of fragmentation. Viscosity experiments demonstrated the differences of the complexed and uncomplexed systems.  相似文献   

3.
A variety of 3″,5″‐diaryl‐3″H,4′H‐dispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]thiadiazol]‐4′‐ones 3a‐c were synthesized regioselectively through the reaction of 4′H,5H‐trispiro[cyclohexane‐1,2′‐chromene‐3′,2″‐[1,3,4]oxadithiino[5,6‐c]chromene‐5″,1″′‐cyclohexan]‐4′‐one ( 1 ) with nitrilimines (generated in situ via triethylamine dehydrohalogenation of the corresponding hydrazonoyl chlorides 2a‐c ) in refluxing dry toluene. Single crystal X‐ray diffraction studies of 3a,b add support for the established structure. Similarly, 3′,5′‐diaryl‐2,2‐dimethyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5a‐c were obtained in a regioselective manner through the reaction of 2,2,5′,5′‐tetramethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino[5,6‐c]chromen]‐4‐one ( 4a ) with nitrilimines under similar reaction conditions. On the other hand, reaction of 2,5′‐diethyl‐2,5′‐dimethyl‐4H,5′H‐spiro[chromene‐3,2′‐[1,3,4]oxadithiino‐[5,6‐c]chromen]‐4‐one ( 4b ) with nitrilimines in refluxing dry toluene afforded the corresponding 3′,5′‐diaryl‐2‐ethyl‐2‐methyl‐3′H,4H‐spiro[chromene‐3,2′‐[1,3,4]thiadiazol]‐4‐ones 5d‐f as two unisolable diastereoisomeric forms.  相似文献   

4.
A series of 2,2′:6′,2″-terpyridine (TPY) based aromatic heterocyclic compounds, extended by thiophene, 4-dibenzothiophene, and thiazole units at the para position of the central pyridine ring in TPY, are described in this paper. A new compound, 4′-(4′-dibenbenzothiophene-5-thiophene-2-yl)-2,2′:6′,2″-terpyridine (La), serves as a tridentate ligand to react with Cu(NO3)2·3H2O and CuCl2·2H2O, respectively, to produce two different Cu(II) complexes [Cu(La)2](NO3)2 and [CuLaCl2] with 1?:?2 and 1?:?1 metal/ligand ratios. Dibenzothiophene is first introduced to TPY via the thiophene bridge. The alterations in cis and trans configuration, dihedral angles between adjacent aromatic rings, and photophysical properties have been observed before and after Cu(II) complexation, which has been verified by their crystal structures, UV–vis and fluorescence spectra.  相似文献   

5.
To develop novel oligothiophene‐based liquid crystals involving hydrogen bonding, new terthiophene derivatives containing a stearylamide group, N,N′‐distearyl‐5,5″‐dicyano‐2,2′∶5′,2″‐terthiophene‐4,4″‐dicarboxamide (DNC18DCN 3T) and N,N′‐distearyl‐5,5′‐dipropyl‐2,2′∶5′,2′‐terthiophene‐4,4″‐dicarboxamide (DNC18 DP3T), were designed and synthesized, and their thermal behavior examined. Although DNC18DP3T did not exhibit liquid crystallinity, DNC18DCN3T was found to form smectic A phase.  相似文献   

6.
Synthesis of binuclear Cu(II) terminally closed [ 2+2 ]- double-stranded helicate-like macrocycles 1, 1′ , 1″ , 2 , 2′ , 2″ and 2+4- μ4-oxo tetranuclear open frame complexes 3 , 3′ , 3″ , 4 , 4′ , 4″ are established. Adapting one-pot self-assembly technique from simple three components systems: 1,1′-binaphthyl-2,2′-diamine, 4-methyl-2,6-diformyl phenol and cupric salts, the helicate-like [ 2+2 ]- macrocyclic complexes 1–1″, 2–2″ and 2+4- μ4-oxo tetranuclear complexes 3–3″ , 4–4″ were obtained by appropriately altering the reaction condition such as temperature and subcomponent ratio. Density Functional Theory (DFT) calculations were carried out for understanding the structural geometries, intermediates involved in the diverse formation of [ 2+2 ] and 2+4 frameworks. The single crystal X-ray structures obtained for 1′ , 2 and 3 confirms the self-assembly process in line with DFT. This detailed analysis tempted us to derive a plausible mechanism for this long standing challenge in the synthesis of such macrocycles using 1,1′-binaphthyl-2,2′-diamine (BNDA) and aromatic aldehyde. The chiroptical properties of enantiopure complexes and their catalytic applications in asymmetric oxidative coupling of 2-naphthol to chiral 1,1’-Bi-2-naphthol (BINOL) achieved in good yield and ee were discussed.  相似文献   

7.
Five New unusual monoterpene-substituted dihydrochalcones, the adunctins A–E (1″S)-1-{2′-hydroxy-4′-methoxy-6′-[4″-methyl-1″-(1?-methylethyl)cyclohex-3″ -en-1″ -yloxy]phenyl}-3-phenylpropan-1-one ( 1 ), (5aR*,8R*,9aR*)-3-phenyl-1-[5′,8′,9′,9′a-tetrahydro-3′-hydroxy-1′-methoxy-8′-(1″-methylethyl)-5′-a-methyldibenzo-[b,d]furan-4′-yl]propan-1-one ( 2 ), (2′R*,4″S*)-1-{6′-hydroxy-4′-methoxy-4″-(1?-methylethyl)spiro[benzo[b]-furan-2′(3′H),1″ -cyclohex-2″ -en]-7′-yl}-3-phenylpropan-1-one ( 3 ), (2′R*,4″R*)-1-{6′-hydroxy-4′-methylethyl-4″-(1?-methylethyl)spiro[benzo[b]furan-2′(3′H),1″-cyclohex-2″-en]-7′-yl}-3-phenypropan-1-one ( 4 ), and (5′aR*,6′S*, 9′R*,9′aS*)-1-[5′a,6′,7′,8′,9′a-hexahydro-3′,6′-methoxy-6′-methyl-9′-(1″-methylethyl)dibenzo[b,d]-furan-4′-yl]-3-phenylpropan-1-one ( 5 ) were isolated from the leaves of Piper aduncum (Piperaceae) by preparative liquid chromatography. In addition, (?)-methyllindaretin ( 6 ), trans-phytol, and α-tocopherol ( = vitamin E) were also isolated and identified. The structures were elucidated by spectroscopic methods, including 1D- and 2D-NMR spectroscopy as well as single-crystal X-ray diffraction analysis. The antibacterial and cytotoxic potentials of the isolates were also investigated.  相似文献   

8.
2-(2,2′?:?6′,2″-Terpyridin-4′-yl)phenol has been prepared with an improved one-pot method. The reaction between the ligand and MnCl2 in ethanol at ambient or hydrothermal conditions afforded dichlorido[2-(2,2′?:?6′,2″-terpyridin-4′-yl)phenol-κ3 N,N′,N″]manganese(II) and dichloridobis[µ-2-(2,2′?:?6′,2″-terpyridin-4′-yl)phenolate-κ3 N,N′,N″-κO]dimanganese(II), respectively. Face-to-face π–π stacking interactions between the pyridine rings play a crucial role in supramolecular networks of both complexes. Both complexes display weaker photoluminescence than the free ligand and the dinuclear complex luminescence was stronger than the mononuclear one.  相似文献   

9.
A range of 6,6″-disubstituted derivatives of 2,2′: 6,2″-terpyridine have been prepared with the intention of forming macrocycles incorporating the 2,2′: 6′,2-?terpyridyl moiety. A high yield route to 6,6″-bis(methylhydrazino-4′-phenyl-2,2′:6′,2″-terpyridine is described, and a number of complexes of this novel pentadentate ligand have been prepared.  相似文献   

10.
The ligand 2,2′,2″-nitrilotriphenol reacts with P(III) and P(V) compounds to form corresponding phosphorus complexes. Syntheses and NMR data of 2,2′,2″-nitrilotriphenyl phosphite ( II ), 2,2′,2″-nitrilotriphenyl phosphate ( III ) and of a hydrolysis product of II , 2,2′-[N-(2-hydroxyphenyl)imino]diphenly phosphonate ( IV ), are reported, as well as crystal structures of II and IV . Phosphite II shows a bicycloundecane framework; no N?Pinteraction is present. The phosphonate IV shows two coordinated and one dangling phenol group; the N-atom does not interact with the P-atom. Strong acids protonate II as well as III to form cations: in these, NMR evidence indicates coordination of the N-atom to the P-atom.  相似文献   

11.
2,3‐Dihydrothiophene 1,1‐dioxide (‘2‐sulfolene’) reacted with tosylmethyl isocyanide (TsMIC) in the presence of a base to give the hitherto unknown 3,5‐dihydro‐2H‐thieno[2,3‐c]pyrrole 1,1‐dioxide (‘β′‐sulfolenopyrrole’) from the expected cyclocondensation. A serendipitous formation of this β′‐sulfolenopyrrole was found earlier, when we investigated synthetic routes to a 3,5‐dihydro‐1H‐thieno[3,4‐c]pyrrole 2,2‐dioxide (a ‘β″‐sulfolenopyrrole’) from TsMIC and 2,5‐dihydrothiophene 1,1‐dioxide (‘3‐sulfolene’). Here, we present the synthesis and characterization of β′‐sulfolenopyrrole. The X‐ray crystal‐structure analyses of β′‐sulfolenopyrrole and the isomeric β″‐sulfolenopyrrole are also reported here. This β′‐sulfolenopyrrole is a new type of a functionalized pyrrole, which is likely to be of interest for pharmaceutical purposes.  相似文献   

12.
The conjugated carboxy-functionalized terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 and [2]rotaxane by self-assembly of [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with β-cyclodextrin are reported as sensitizer for dye-sensitized solar cells (DSSCs), where tdctpy?=?4′-p-tolyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine, dctpy?=?4,4″-dicarboxy-2,2′?:?6,2″-terpyridine and dctpy-(ph)4-dctpy represents a bridging ligand where two 4,4″-dicarboxy-2,2′?:?6′,2″-terpyridine units are connected through four phenyl spacers in the 4′-position. The DSSCs fabricated utilizing these materials give typical electric power conversion efficiency of 0.013–0.523% under air mass (AM) 1.5, 100?mW?cm?2 irradiation at room temperature. The terpyridyl bimetal ruthenium complex [(tdctpy)Ru(dctpy-(ph)4-dctpy)Ru(tdctpy)][PF6]4 with conjugated-bridge chains displayed much higher conversion efficiency compared with the carboxy-functionalized terpyridyl monometal ruthenium complex [tdctpy-Ru-(idctpy)][PF6]2, where idctpy?=?4′-p-iodophenyl-4,4″-dicarboxy-2,2′?:?6,2″-terpyridine. [2]Rotaxane displayed the highest electric power conversion efficiency of 0.523% when β-cyclodextrin was introduced into the conjugated terpyridyl bimetal ruthenium complex and formed [2]rotaxane.  相似文献   

13.
《Polyhedron》2003,22(14-17):2099-2110
The synthetic route based on Stille coupling between tributyltinpyridyl derivatives and bromo substituted mono- and dipyridyl-carbaldehyde is used for the synthesis of 5,5″-diformyl-2,2′:6′,2″-terpyridine (8). A sequence of Ullman coupling with 2,3-bis(hydroxylamino)-2,3-dimethylbutane followed by oxidation under phase transfer conditions affords either 5,5″-Bis(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolidin-2-yl)2,2′:6′,2″-terpyridine (10) (diNN-Terpy) or the related 5,5″-Bis(1-oxyl-4,4,5,5-tetramethylimidazolidin-2-yl)2,2′:6′,2″-terpyridine (11) (diIN-Terpy), where both biradicals display clear intramolecular ferromagnetic interaction between the single spin units as evidenced by ESR spectroscopy. Quantum chemical calculations (ROHF/AM1) are performed showing the triplet ground-state for both 10 and 11 radicals.  相似文献   

14.
Poly[3,4-bis(3-methylbutylthio)thienylenevinylene], poly[3,4-bis-(S)-(2-methylbutylthio)thienylenevinylene], poly[3′,4′-bis(3-methylbutylthio)-2,2′:5′,2″-terthienylene-5,5″-vinylene], and poly{3′,4′-bis-(S)-[2-methylbutylthio]-2,2′:5′,2″-terthienylene-5,5″-vinylene} have been synthesized. The synthesis starts from the thiophene monomers and trimers, which are formylated to give the corresponding dialdehydes. The dialdehydes are reductively polymerized using a McMurry coupling. The polymers are characterized by GPC, optical spectroscopy (FT-IR, UV-vis, circular dichroism spectroscopy and photoluminescence) and by proton and carbon NMR spectroscopy. The polymers are soluble in common organic solvents, such as THF, chloroform, toluene, benzene and 1,2-dichlorobenzene. The solvatochromism and thermochromism of the polymers in solution are investigated, while the optical activity of the polymers is used to investigate the supramolecular aggregation. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4629–4639, 1999  相似文献   

15.
The 1,3‐dipolar cycloaddition of azomethine ylide generated in situ from isatin and sarcosine to 2‐arylmethylidene‐2,3‐dihydro‐1H‐pyrrolizin‐1‐ones afforded novel 1′‐methyl‐4′‐(aryl)‐1″H‐dispiro[indole‐3,2′‐pyrrolidine‐3′,2″‐pyrrolizine]‐1″,2(1H)‐diones in good yields. The structures of all the products were characterized thoroughly by NMR, infrared spectroscopy, mass spectrum, and elemental analysis.  相似文献   

16.
Polypyridyl ruthenium(II) complexes [RuII(3-bptpy)(dmphen)Cl]ClO4 (1), [RuII(3-cptpy)(dmphen)Cl]ClO4 (2), [RuII(2-tptpy)(dmphen)Cl]ClO4 (3), and [RuII(9-atpy)(dmphen)Cl]ClO4 (4) {where 3-bptpy?=?4′-(3-bromophenyl)-2,2′:6′,2″-terpyridine, 3-cptpy?=?4′-(3-chlorophenyl)-2,2′:6′,2″-terpyridine, 2-tptpy?=?4′-(2-thiophenyl)-2,2′:6′,2″-terpyridine, 9-atpy?=?4′-(9-anthryl)-2,2′:6′,2″-terpyridine, dmphen?=?2,9-dimethyl-1,10-phenanthroline} have been synthesized and characterized. The DNA-binding properties of the complexes with Herring Sperm DNA have been investigated by absorption titration and viscosity measurements. The ability of complexes to break the pUC19 DNA has been checked by gel electrophoresis. The experimental results suggest that all the complexes bind DNA via partial intercalation. The results also show that the order of DNA-binding affinities of the complexes is 4?<?3?<?2?<?1, confirming that planarity of the ligand in a complex is very important for DNA-binding.  相似文献   

17.
Four new transitional metal supramolecular architectures, [Zn(cca)(2,2′‐bpy)]n · n(2,2′‐bpy) ( 1 ), [Cu(cca)(2,2′‐bpy)]n ( 2 ), [Zn(bpdc)(2,2′‐bpy)(H2O)]n · 0.5nDMF · 1.5nH2O ( 3 ), and [Co(bpdc)(2,2′‐bpy)(H2O)]n · nH2O ( 4 ) (H2cca = p‐carboxycinnamic acid; H2bpdc = 4,4′‐biphenyldicarboxylic acid; 2,2′‐bpy = 2,2′‐bipyridine) were synthesized by hydrothermal reactions and characterized by single crystal X‐ray diffraction, elemental analyses, and IR spectroscopy. Although the metal ions in these four compounds are bridged by linear dicarboxylic acid into 1D infinite chains, there are different π–π stacking interactions between the chains, which results in the formation of different 3D supramolecular networks. Compound 1 is of a 3D open‐framework with free 2,2′‐bpy molecules in the channels, whereas compound 2 is of a complicated 3D supramolecular network. Compounds 3 and 4 are isostructural. Both compounds have open‐frameworks.  相似文献   

18.
The reaction involving 4‐phenyl‐octahydro‐pyrano[2,3‐d]pyrimidine‐2‐thione, ethyl chloroacetate and the appropriate aromatic aldehyde yielded 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones. The 1,3‐dipolar cycloaddition of 2‐arylmethylidene‐5‐phenyl‐5a,7,8,9a‐tetrahydro‐5H,6H‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidin‐3(2H)‐ones with azomethine ylide generated by a decarboxylative route from sarcosine and acenaphthenequinone afforded 4′‐aryl‐1′‐methyl‐5″‐phenyl‐5a″,7″,8″,9a″‐tetrahydro‐2H,5″H,6″H‐dispiro[acenaphthylene‐1,2′‐pyrrolidine‐3′,2″‐pyrano[2,3‐d][1,3]thiazolo[3,2‐a]pyrimidine]‐2,3″‐diones in moderate yields. The structures of the products were determined and characterized thoroughly by NMR, MS, IR, elemental analysis, and X‐ray crystallographic analysis.  相似文献   

19.
The acid‐catalyzed reaction between formaldehyde and 1H‐indene, 3‐alkyl‐ and 3‐aryl‐1H‐indenes, and six‐membered‐ring substituted 1H‐indenes, with the 1H‐indene/CH2O ratio of 2 : 1, at temperatures above 60° in hydrocarbon solvents, yields 2,2′‐methylenebis[1H‐indenes] 1 – 8 in 50–100% yield. These 2,2′‐methylenebis[1H‐indenes] are easily deprotonated by 2 equiv. of BuLi or MeLi to yield the corresponding dilithium salts, which are efficiently converted into ansa‐metallocenes of Zr and Hf. The unsubstituted dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1H‐inden‐1‐yl]}zirconium ([ZrCl2( 1′ )]) is the least soluble in organic solvents. Substitution of the 1H‐indenyl moieties by hydrocarbyl substituents increases the hydrocarbon solubility of the complexes, and the presence of a substituent larger than a Me group at the 1,1′ positions of the ligand imparts a high diastereoselectivity to the metallation step, since only the racemic isomers are obtained. Methylene‐bridged ‘ansa‐zirconocenes’ show a noticeable open arrangement of the bis[1H‐inden‐1‐yl] moiety, as measured by the angle between the planes defined by the two π‐ligands (the ‘bite angle’). In particular, of the ‘zirconocenes’ structurally characterized so far, the dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[4,7‐dimethyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 5′ )] is the most open. The mixture [ZrCl2( 1′ )]/methylalumoxane (MAO) is inactive in the polymerization of both ethylene and propylene, while the metallocenes with substituted indenyl ligands polymerize propylene to atactic polypropylene of a molecular mass that depends on the size of the alkyl or aryl groups at the 1,1′ positions of the ligand. Ethene is polymerized by rac‐dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1‐methyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 2′ )])/MAO to polyethylene waxes (average degree of polymerization ca. 100), which are terminated almost exclusively by ethenyl end groups. Polyethylene with a high molecular mass could be obtained by increasing the size of the 1‐alkyl substituent.  相似文献   

20.
Abstract

The title complexes, diaquadi(2,2″-bipyridine)di(dichloroacetato)lanthanide(III) monodichloroacetato [Ln(CHCl2COO)2(2,2′-bipy)2(H2O)2]+(CHCl2COO)?(Ln = Dy, Ho, Tm, Er, Yb], were obtained and characterized. [Er(CHCl2COO)2(2,2′-bipy)2(H2O)2]+(CHCl2COO)? crystallizes in the mooclinic space group P21/n with Z = 4. Cell dimensions are a = 15.886(9), b = 13.758(2), c = 16.343(4)Å, β = 113.31(3)°, and the structure was refined to an R of 0.049 for 3415 observed reflections. The Er(III) ion exhibits a distorted, square antiprismatic configuration. Four N atoms of 2,2′-bipy and four O atoms from two dichloroacetato and two water ligands are coordinated. One dichloroacetato group lies outside the polyhedron and is connected with water ligands by hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号