首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotube enhanced electrochemically activated glassy carbon electrode (GCE) has been prepared and applied for sensitive electrochemical determination of DNA and DNA bases. The results indicate that the relative activation could efficiently enhance electron transfer at the pretreated GCE so that this carbon nanotube activated glassy carbon electrode could provide relatively low detection limit with good reproducibility for the respective biomolecular determination. Besides, greatly enhanced sensitivity could be obtained for the relevant electrochemical detection of the bio‐recognition process including DNA biosensing by using the carbon nanotube activated GCE. This approach provided a detection limit of 7.5 nM for guanine and 150 ng/mL for acid denatured DNA. These observations suggest that the carbon nanotube activated glassy carbon electrode could be utilized as a very sensitive and stable biosensor for some specific biological process.  相似文献   

2.
A selective and very simple electrochemical method, based on anodization of a glassy carbon electrode (GCE), was developed for the simultaneous detection of hydroquinone (HQ) and catechol (CT). It was found that the activated GCE showed an excellent catalytic behavior and enhanced reversibility towards the oxidation of both HQ and CT. The redox responses from the mixture of HQ and CT were easily resolved at an activated GCE. The detection limits for HQ and CT were calculated to be 0.16 and 0.11 μM, respectively. The activated GCE was successfully examined for real sample analysis with tap water and it showed a stable and reliable recovery data.  相似文献   

3.
The electrochemical behavior and the interaction of alizarin red S (ARS) with calf thymus DNA was investigated on a bare glassy carbon electrode (GCE) and DNA modified GCE (DNA/GCE), respectively. ARS showed a pair of redox peaks at ?0.445 V and ?0.414 V on a bare GCE. On addition of DNA into the ARS solution, the peak current of ARS decreased and the peak potential positively shifted, but without new redox peaks appeared. The ARS reduction peak current increased with immersion time on a DNA/GCE. The results showed that ARS could interact with DNA molecules by intercalative binding mode. The equilibrium constant, binding number and the ratio of binding constant for oxidized and reduced ARS forms were obtained. The DNA damage was directly detected by appearance of guanosine and adenosine bases oxidation signal. The influence of experimental conditions on DNA damage extent was discussed in detail.  相似文献   

4.
The electrochemical behavior of hemin, an iron complex of porphyrin, on binding to DNA at a glassy carbon electrode (GCE) and in solution, is described. Hemin, which interacts with covalently immobilized calf thymus DNA, was detected by use of a bare GCE, a double-stranded DNA-modified GCE (dsDNA-modified GCE), and a single-stranded DNA-modified GCE (ssDNA-modified GCE), in combination with differential pulse voltammetry (DPV). The structural conformation of DNA was determined from changes in the voltammetric signals acquired on reduction of hemin. As a result of its large steric structure and anionic substitution on its porphyrin plane, hemin intercalates between the base pairs of dsDNA. A scan-rate study for hemin and the dsDNA-hemin complex were also performed to determine the electrochemical behavior of the complex. The partition coefficient was obtained from the peak currents measured when different concentrations of hemin were in the presence of dsDNA. By observing the oxidation signals of guanine, damage to DNA after reaction with hemin at the GCE surface was also detected. The electrochemical detection of hybridization between the covalently immobilized probe and its target sequence was detected by use of hemin. These results demonstrate the use of DNA biosensors in conjunction with hemin for electrochemical detection of hybridization and damage to DNA.  相似文献   

5.
以乙二胺为手臂分子制备的DNA修饰电极及其伏安性能   总被引:5,自引:0,他引:5  
Carboxyl was formed on the surface of glassy carbon electrode(GCE) by electrochemical oxidation. Ethylenediamine(En) was used as the arm molecule to link carboxyl with dsDNA using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N- hydroxysuccinimide (NHS) as the activators to prepare dsDNA modified electrode(dsDNA/En/GCE). It was shown that dsDNA couM be covalently immobilized on the surface of GCE. ssDNA modified electrode(ssDNA/En/GCE) was obtained via the thermal denaturation of dsDNA/En/GCE. The dsDNA/En/GCE and ssDNA/En/GCE were characterized by voltammetry with methylene blue(MB) as the indicator. The results indicated that the currents of the redox peaks of MB at ssDNA/En/GCE were larger than those at dsDNA/En/GCE, and the currents of the redox peaks at En/GCE were the smallest. The peak-currents of MB at the DNA modified electrode had good reproducibility after multi-denaturation and hybridization cycles.  相似文献   

6.
《Electroanalysis》2006,18(15):1471-1478
In this paper, we present an electrochemical impedance‐based DNA biosensor by using a composite material of polypyrrole (PPy) and multiwalled carbon nanotubes (MWNTs) to modify glassy carbon electrode (GCE). The polymer film was electropolymerized onto GCE by cyclic voltammetry (CV) in the presence of carboxylic groups ended MWNTs (MWNTs‐COOH). Such electrode modification method is new for DNA hybridization sensor. Amino group ended single‐stranded DNA (NH2‐ssDNA) probe was linked onto the PPy/MWNTs‐COOH/GCE by using EDAC, a widely used water‐soluble carbodiimide for crosslinking amine and carboxylic acid group. The hybridization reaction of this ssDNA/PPy/MWNTs‐COOH/GCE resulted in a decreased impedance, which was attributed to the lower electronic transfer resistance of double‐stranded DNA than single‐stranded DNA. As the result of the PPy/MWNTs modification, the electrode obtained a good electronic transfer property and a large specific surface area. Consequently, the sensitivity and selectivity of this sensor for biosensing DNA hybridization were improved. Complementary DNA sequence as low as 5.0×10?12 mol L?1 can be detected without using hybridization marker or intercalator. Additionally, it was found that the electropolymerization scan rate was an important factor for DNA biosensor fabrication. It has been optimized at 20 mV s?1.  相似文献   

7.
In this study, an oxadiazole multi-wall carbon nanotube-modified glassy carbon electrode (OMWCNT?GCE) was used as a highly sensitive electrochemical sensor for hydrazine determination. The surface charge transfer rate constant, k s, and the charge transfer coefficient, ??, for electron transfer between GCE and electrodeposited oxadiazole were calculated as 19.4?±?0.5?s?1 and 0.51, respectively at pH?=?7.0. The obtained results indicate that hydrazine peak potential at OMWCNT?GCE shifted for 14, 109, and 136?mV to negative values as compared with oxadiazole-modified GCE, MWCNT?GCE, and activated GCE surface, respectively. The electron transfer coefficient, ??, and the heterogeneous rate constant, k??, for the oxidation of hydrazine at OMWCNT?GCE were also determined by cyclic voltammetry measurements. Two linear dynamic ranges of 0.6 to 10.0???M and 10.0 to 400.0???M and detection limit of 0.17???M for hydrazine determination were evaluated using differential pulse voltammetry. In addition, OMWCNT?GCE was shown to be successfully applied to determine hydrazine in various water samples.  相似文献   

8.
The determination of the interaction between lumichrome (LC), one of the products of decomposition of the biologically important flavins, and calf thymus double-stranded DNA was performed by using cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) in connection with a hanging mercury drop electrode (HMDE) or glassy carbon electrode (GCE). The nature of the process taking place at both electrode surfaces was clarified. It was found that the addition of DNA to a buffered LC solution results in the decrease of redox peak currents with changes in the peak potentials at both electrodes. We assume that LC interacting with DNA produces an electrochemically inactive supramolecular complex via intercalation. There was a difference between the electrochemical parameters determined at the HMDE and those at the GCE. The binding constants ( K) of the LC-DNA complex at HMDE and GCE were determined through the changes of peak currents and their values at the 10(5) level and 10(4) level with each nucleotide residue of DNA binding one LC molecule, respectively. Furthermore, the calibration graph for the determination of DNA was obtained by the decrease in the DPSV peak current of LC in the presence of DNA. Different variables, such as the concentration of LC, the accumulation time and solution conditions, were studied and optimised to maximize the sensitivity; in addition, the detection limit and the reproducibility were determined.  相似文献   

9.
Voltammetric methods were used to probe the interaction of antimicrobial drug metronidazole (MTZ) with calf thymus DNA. Binding constants (K) and binding site sizes (s) were determined from the voltammetric data, i.e., shifts in potential and changes in limiting current with the addition of DNA. MTZ showed appreciable electrostatic binding to DNA in solution with K=2.2(+/- 1.3) x 10(4) M(-1) and s=0.34 bp. One reduction peak of MTZ at the bare glassy carbon electrode (GCE) split into two peaks at the DNA modified GCE (DNA/GCE). These changes in the cyclic voltammogram can only be due to the interaction of MTZ with the surface-confined DNA. In addition, the peak current of MTZ at the DNA/GCE was nearly 8-fold of the response at the bare GCE. The low detection limit of 2.0 x 10(-8) M made the DNA/GCE a promising biosensor for MTZ determination. And this method was successfully applied with high precision and accuracy compared with spectroscopic methods (relative error < 6%) for estimation of the total MTZ drug content in pharmaceutical dosage forms.  相似文献   

10.
Poly(ferrocenylsilane) (PFS), composed of electroactive ferrocene units existing in the polymer main chain, was directly dropped on the DNA modified glassy carbon electrode (GCE). The electrochemical and electrocatalytic behaviors of PFS/DNA/GCE were investigated in detail. Cyclic voltammograms of the PFS/DNA/GCE showed two pairs of reversible redox peaks, indicating a stepwise oxidation of the electroactive units. It was found that DNA film played a key role in immobilizing the PFS and facilitating the electron transfer between electroactive units of PFS and the GCE surface. Moreover, the PFS/DNA/GCE showed a good electrocatalytic ability to the oxidization of ascorbic acid (AA), suggesting it had the potential application as a new type of sensor to detect AA.  相似文献   

11.
柔红霉素在钴离子注入修饰玻碳电极上与DNA相互作用   总被引:1,自引:0,他引:1  
用钴离子注入修饰电极研究了柔红霉素与DNA的相互作用.柔红霉素以嵌入方式与DNA发生作用,形成非电活性的结合物.加入DNA后,柔红霉素的电化学行为没有改变,仍为扩散控制.用非线性拟合得到柔红霉素与DNA的结合常数K=1.09×108cm3/mol,结合数s≈4.DNA分子结构中的1个螺旋结合2个柔红霉素.  相似文献   

12.

In this study, an oxadiazole multi-wall carbon nanotube-modified glassy carbon electrode (OMWCNT−GCE) was used as a highly sensitive electrochemical sensor for hydrazine determination. The surface charge transfer rate constant, k s, and the charge transfer coefficient, α, for electron transfer between GCE and electrodeposited oxadiazole were calculated as 19.4 ± 0.5 s−1 and 0.51, respectively at pH = 7.0. The obtained results indicate that hydrazine peak potential at OMWCNT−GCE shifted for 14, 109, and 136 mV to negative values as compared with oxadiazole-modified GCE, MWCNT−GCE, and activated GCE surface, respectively. The electron transfer coefficient, α, and the heterogeneous rate constant, k′, for the oxidation of hydrazine at OMWCNT−GCE were also determined by cyclic voltammetry measurements. Two linear dynamic ranges of 0.6 to 10.0 μM and 10.0 to 400.0 μM and detection limit of 0.17 μM for hydrazine determination were evaluated using differential pulse voltammetry. In addition, OMWCNT−GCE was shown to be successfully applied to determine hydrazine in various water samples.

  相似文献   

13.
采用Hummers法制备了纳米石墨烯,并将该纳米材料分散在蒸馏水中得到悬浮液,取5μL的悬浮液滴涂在玻碳电极表面,制备石墨烯修饰电极。用循环伏安法研究了在pH 4.0磷酸盐电解质中,在-0.4~0.8V(vs.Ag/AgCl)电位范围内,抗坏血酸在修饰电极上的电化学行为。结果表明:抗坏血酸在修饰电极上在0.173V处可见明显的氧化峰,且氧化峰电流显著高于在裸玻碳电极上的氧化峰电流;并可有效排除肾上腺素、尿酸、多巴胺等物质的干扰。据此提出了用循环伏安法测定抗坏血酸的方法。抗坏血酸的线性范围为8.00×10-6~1.0×10-3 mol.L-1,检出限(3S/N)为1.0×10-7 mol.L-1。方法用于维生素C片的分析,回收率在96.3%~104.4%之间。  相似文献   

14.
We report electrochemical preparation and characterization of a new biosensor made of nanostructured titanium dioxide (nano-TiO(2)) particles and deoxyribonucleic acid (DNA). Thionin (TN) redox mediator was electrochemically deposited onto DNA/nano-TiO(2) modified glassy carbon electrode (GCE). The X-ray diffraction analysis, atomic force microscope (AFM) and scanning electron microscope (SEM) were used for surface analysis of TN/DNA/nano-TiO(2) film. In neutral buffer solution, TN/DNA/nano-TiO(2)/GCE biosensor exhibited excellent electrocatalytic activity towards the reduction of hydrogen peroxide (H(2)O(2)) and oxygen (O(2)). The biosensor shows excellent analytical performance for amperometric determination of H(2)O(2), at reduced overpotential (-0.2V). The detection limit and liner calibration range were found to be 0.05mM (S/N=3) and 0.05-22.3mM, respectively. In addition, determination of H(2)O(2) in real samples was carried out using the new biosensor with satisfactory results. The TN/DNA/nano-TiO(2)/GCE showed stable and reproducible analytical performance towards the reduction of H(2)O(2). This biosensor can be used as an amperometric biosensor for the determination of H(2)O(2) in real samples.  相似文献   

15.
《Electroanalysis》2006,18(24):2458-2466
A promising electrochemical biosensor was fabricated by electrochemical grafting of ribonucleic acid (RNA) at 1.8 V (vs. SCE) on glassy carbon electrode (GCE) (denoted as RNA/GCE), for simultaneous detection of dopamine (DA) and uric acid (UA) with coexistence of excess amount of ascorbic acid (AA). The electrode was characterized by X‐ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The RNA modified layer on GCE exhibited superior catalytic ability and anionic exclusive ability in comparison with the DNA modified electrode. Three separated anodic DPV peaks were obtained at 0.312, 0.168 and ?0.016 V for UA, DA and AA, respectively, at the RNA/GCE in pH 7.0 PBS. In the presence of 2.0 mM AA, a linear range of 0.37 to 36 μM with a detection limit of 0.2 μM for DA, and in the range of 0.74 to 73 μM with a detection limit of 0.36 μM for UA were obtained. The co‐existence of 5000 fold AA did not interfere with the detection of DA or UA. The modified electrode shows excellent selectivity, good sensitivity and good stability.  相似文献   

16.
We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.  相似文献   

17.
博莱霉素(BLM)在0.1mol/LHOAc-NaOAc缓冲溶液(pH4.62)中,在Ni/GCE离子注入修饰电极上有一灵敏的还原峰,峰电位为-1.16V(vs.SCE),峰电流与BLM浓度有关。用线性扫描和循环伏安法研究体系的行为表明,体系为具有加速作用的不可逆过程,是注入的Ni加速BLM的还原。引入DNA后,BLM的峰电位为-1.15V(vs.SCE),与未加入DNA前几乎完全一致;只使峰电流降低,形成一种非电活性的结合物,求得该结合物的结合比为BLM:DNA=3:1,结合常数为β=3.16×10^16,用线性扫描和循环伏安法,并辅以紫外可见光谱法等手段研究表明,电极过程仍为不可逆过程,与未加入DNA时一样。加入DNA后,BLM的峰电流降低,可用于DNA的测定,回收率在96.8~103.9%之间.  相似文献   

18.
A nanostructured film electrode, a multi-wall carbon nanotubes (MWNT)-modified glassy carbon electrode (GCE), is described for the simultaneous determination of guanine and adenine. The properties of the MWNT-modified GCE were investigated by scanning electron microscopy (SEM) and cyclic voltammetry. The oxidation peak currents of guanine and adenine increased significantly at the MWNT-modified GCE in contrast to those at the bare GCE. The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. Using the MWNT-modified GCE, a sensitive and direct electrochemical technique for the measurement of native DNA was also developed, and the value of (G+C)/(A+T) of HCl-digested DNA was detected.  相似文献   

19.
Electrochemical redox processes of bovine heart cytochrome c were investigated by in situ UV-vis and CD spectroelectrochemistry at bare glassy carbon electrode (GCE) and single-wall carbon nanotubes (SWNTs) modified glassy carbon electrode (SWNTs/GCE) using a long optical path thin layer cell. The spectra obtained at GCE and SWNTs/GCE reflect electrode surface microstructure-dependent changes in protein conformation during redox transition. Potential-dependent conformational distribution curves of cytochrome c obtained by analysis of in situ circular dichroism (CD) spectra using singular value decomposition least square (SVDLS) method show that SWNTs can retain conformation of cytochrome c. Some parameters of the electrochemical reduction process, i.e. the product of electron transfer coefficient and number of electrons (alpha n = 0.3), apparent formal potential (E0' = 0.04 V), were obtained by double logarithmic analysis and standard heterogeneous electron transfer rate constant k0 was obtained by electrochemistry and double logarithmic analysis, respectively.  相似文献   

20.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号