首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoredox reactions in irradiated methanolic solutions of trans-[Fe(R′-sal-R2-en) (CH3OH)(NCS)] complexes, where R′-sal-R2-en2? are tetradentate open-chain N,N-1,1-R2-ethylenebis(R′-salicylideneiminato) ligands (R?=?H or CH3; R′?=?H, 5-Cl, 5-Br, 3,5-Br2, 3-OCH3, 4-OCH3), have been explored and a mechanism suggested. The complexes are redox-stable in the dark in methanol. Continuous irradiation of solutions in the region of intraligand (IL) or ligand-to-metal charge transfer (LMCT) transitions leads to photoreduction of Fe(III) to Fe(II) and formation of formaldehyde (CH2O). Formation of polystyrene-containing bonded NCS, when irradiating the complexes in the presence of styrene used as a radical scavenger, indicates that the primary photoreduction of Fe(III) to Fe(II) is accompanied by oxidation of NCS? to the ?NCS radical. R′-sal-R2-en ligands have little effect on the photoinduced redox processes. The quantum yield of Fe(II) formation, ΦFe(II), as a quantitative parameter of photoredox efficiency, decreases significantly with increasing wavelength of incident radiation, and is slightly influenced by the peripheral groups, R, of R′-sal-R2-en.  相似文献   

2.
Radiolytic G-values were determined for [−Fe(III)IDA], Fe(II), (−IDA) and CHO-COOH in deoxygenated aqueous solutions of Fe(III)IDA and Fe(III)gly, and in the presence of scavengers, t-butanol, 2-propanol, methanol, sodium formate and O2. The metal ion was reduced by e-aq, H or secondary radicals HO2, CO2, CH2-OH and (CH3)2C-OH, while the OH radical did so indirectly through α-hydrogen abstraction from the ligand followed by intramolecular electron transfer. The rate constant k[OH + Fe(III)IDA], determined by the competition kinetics method at pH 2.0, was 1.7 × 108 M-1 s-1.  相似文献   

3.
Summary. Photoredox reactions occurring in irradiated methanolic solutions of trans-[Fe(N 2 O 2 ) (CH3OH)N3], where N 2 O 2 2– are tetradentate open-chain N 2 O 2 -Schiff base N,N-ethylenebis(R-salicylaldiminato) or N,N-1-methylethylenebis(R-salicylaldiminato) ligands denoted as R-salen and R-sal(Me)en, respectively (R=H, 5-Cl, 5-Br, 4-OCH3), have been investigated and their mechanism has been proposed. The complexes are redox stable in the dark. Ultraviolet and/or visible irradiation of methanolic solutions of the complexes induces photoreduction of Fe(III) to Fe(II). As an intermediate, CH2OH radicals were identified by EPR spin trapping technique. The final product of the photooxidation coupled with the photoreduction of Fe(III) is formaldehyde. The efficiency of the photoredox processes is strongly wavelength dependent and influenced by the peripheral groups R of the tetradentate ligands. Differences between the course of photochemical changes induced by 254nm radiation and the other wavelengths of incident radiation is rationalized by involving azide anions photoreactivity in observed redox changes.  相似文献   

4.
Crystals of brucinium 3,5‐dinitro­benzoate methanol solvate, C23H27N2O4+·C7H3N2O6·CH3OH, (I), brucinium 3,5‐dinitro­benzoate methanol disolvate, C23H27N2O4+·C7H3N2O6·2CH3OH, (II), and brucinium 3,5‐dinitro­benzoate trihydrate, C23H27N2O4+·C7H3N2O6·3H2O, (III), were obtained from methanol [for (I) and (II)] or ethanol solutions [for (III)]. The brucinium cations and 3,5‐dinitro­benzoate anions are linked by ionic N—H+⋯O hydrogen bonds. In the crystals of (I), (II) and (III), the brucinium cations exhibit different modes of packing, viz. corrugated ribbons, pillars and corrugated monolayer sheets, respectively. While in (III), the amide O atom of the brucinium cation participates in O—H⋯O hydrogen bonds, in which water mol­ecules are the donors, in (I) and (II), the amide O atom of the brucinium cation is involved in weak C—H⋯O hydrogen bonds and other brucinium cations are the donors.  相似文献   

5.
Summary.  The mechanisms of photoinduced processes occurring in methanolic solutions of trans-[Fe(4-R-benacen)(CH3OH)I] (4-R-benacen 2− : N,N′-ethylene-bis-(4-R-benzoylacetoneiminato) tetradentate open-chain Schiff bases with R = H, Cl, Br, CH3, OCH3, or NO2) were investigated by electronic absorption spectroscopy and EPR spin trapping. The complexes are redox-stable in the dark both in the solid state and in methanolic solutions. Ultraviolet and/or visible irradiation in methanol induces photoreduction of Fe(III) to Fe(II). No formation of I˙ or was observed. ˙CH2OH radicals and/or solvated electrons were identified in irradiated systems using nitrosodurene or 5,5-dimethyl-1-pyrroline-N-oxide as spin traps. The final product of the photooxidation coupled with the photoreduction of Fe(III) is formaldehyde, the molar ratio of Fe(II) and CH2O being close to 2:1. The efficiency of the photoredox process is strongly wavelength dependent and influenced by the peripheral groups R of the tetradentate ligands. It is suggested that the primary photoredox step starts from thermally nonequilibrated ligand-to-metal charge transfer excited states. Received May 2, 2001. Accepted May 30, 2001  相似文献   

6.
The title complex, catena‐poly[[[(2,2′‐bipyridine‐1κ2N,N′)tris(methanol‐2κO)(nitrato‐2κ2O,O′)‐μ‐cyanido‐1:2C:N‐cyanido‐1κC‐iron(II)neodymium(III)]‐di‐μ‐cyanido‐1:2′C:N;2:1′N:C] methanol solvate], {[FeIINdIII(CN)4(NO3)(C10H8N2)(CH3OH)3]·CH3OH}n, is made up of ladder‐like one‐dimensional chains oriented along the c axis. Each ladder consists of two strands based on alternating FeII and NdIII centers connected by cyanide bridges. Furthermore, two such parallel chains are connected by additional cyanide cross‐pieces (the `rungs' of the ladder), which likewise connect FeII and NdIII centers, such that each [Fe(CN)4(bipy)]2− unit (bipy is 2,2′‐bipyridine) coordinates with three NdIII centers and each NdIII center connects with three different [Fe(CN)4(bipy)]2− units. In the complex, the iron(II) cation is six‐coordinated with a distorted octahedral geometry and the neodymium(III) cation is eight‐coordinated with a distorted dodecahedral environment.  相似文献   

7.
The crystal structures of the title complexes, namely trans‐bis­(iso­quinoline‐3‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)cobalt(II), [Co(C10H6NO2)2(CH3OH)2], and the corresponding nickel(II) and copper(II) complexes, [Ni(C10H6NO2)2(CH3OH)2] and [Cu(C10H6NO2)2(CH3OH)2], are isomorphous and contain metal ions at centres of inversion. The three compounds have the same distorted octahedral coordination geometry, and each metal ion is bonded by two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two iso­quinoline‐3‐carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O—H⋯O hydrogen bonds between the methanol ligands and neighbouring carboxyl­ate groups.  相似文献   

8.
Reactions of Ni(O2CCH3)2·4H2O and Cu(O2CCH3)2·H2O with biacetyl bis(benzoylhydrazone) (H2babh) in alcoholic media afford mononuclear nickel(II) and copper(II) complexes of general formula [M(babh)]. The complexes have been characterized by microanalysis (C, H, N), magnetic susceptibility, and various spectroscopic measurements. X-ray structures of both complexes have been determined. The metal centre in [Ni(babh)] is in square-planar N2O2 environment provided by the tetradentate babh2−. On the other hand, [Cu(babh)] crystallizes as distorted square-pyramidal [Cu(babh)(CH3OH)] from methanol. Here the tetradentate babh2− constitutes the N2O2 square-base and the O-coordinating methanol occupies the apical site. In the crystal lattice, the molecules of [Ni(babh)] form a one-dimensional π-stacked structure. The [Cu(babh)(CH3OH)] molecules also form a one-dimensional structure with alternating long and short Cu···Cu distances via intermolecular O–H···N hydrogen bonding and π–π interaction.  相似文献   

9.
A series of arene-ruthenium complexes of the general formula [RuCl26-C6H5(CH2)2R}L] with R=OH, CH2OH, OC(O)Fc, CH2OC(O)Fc (Fc=ferrocenyl) and L=PPh3, (diphenylphosphino)ferrocene, or bridging 1,1-bis(diphenylphosphino)ferrocene, have been synthesized. Two synthetic pathways have been used for these ferrocene-modified arene-ruthenium complexes: (a) esterification of ferrocene carboxylic acid with 2-(cyclohexa-1,4-dienyl)ethanol, followed by condensation with RuCl3 · nH2O to afford [RuCl26-C6H5(CH2)2OC(O)Fc}]2, and (b) esterification between ferrocene carboxylic acid and [RuCl26-C6H5(CH2)3OH}L] to give [RuCl26-C6H5(CH2)3OC(O)Fc}L]. All new compounds have been characterized by NMR and IR spectroscopy as well as by mass spectrometry. The single-crystal X-ray structure analysis of [RuCl26-C6H5(CH2)3OH}(PPh3)] shows that the presence of a CH2CH2CH2OH side-arm allows [RuCl26-C6H5(CH2)3OH}(PPh3)] to form an intramolecular hydrogen bond with a chlorine atom. The electrochemical behavior of selected representative compounds has been studied. Complexes with ferrocenylated side arms display the expected cyclic voltammograms, two independent reversible one-electron waves of the Ru(II)/Ru(III) and Fe(II)/Fe(III) redox couples. Introduction of a ferrocenylphosphine onto the ruthenium is reflected by an additonal reversible, one-electron wave due to ferrocene/ferrocenium system which is, however, coupled with the Ru(II)/Ru(III) redox system.  相似文献   

10.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

11.
A new dinuclear Fe(III) complex, [Fe(5-MeOL1)(OH)0.86(CH3O)0.14]2?2(CH3OH), [H2-5-MeOL1 = N,N′-bis(5-methoxy-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine], 1 has been synthesized and characterized by single crystal structure analysis. The structure of 1 consists of two Fe(III) centers with one tetradentate schiff base ligand (N2O2) which are bridged by dihydroxo/dimethoxo groups to yield a Fe2O2 core. Complex 1 exhibits weak antiferromagnetic exchange interaction between Fe(III) ions with J = ?0.21 cm–1.  相似文献   

12.
Salicylaldehyde or 5-bromosalicylaldehyde react with 2,3-diaminophenol to give two unsymmetrical Schiff-bases H2L1, H2L2, respectively. With Fe(III) and Co(II), these ligands lead to four complexes: Fe(III)ClL1, Fe(III)ClL2, Co(II)L1, Co(II)L2. The structures of these complexes were determined by mass spectroscopy, infrared and electronic spectra. Cyclic voltammetry in dimethylformamide (DMF) showed irreversible waves for both ligands. In the same experimental conditions, Fe(III)ClL1 exhibited a reversible redox couple Fe(III)/Fe(II) while the three other complexes showed quasi-reversible systems. The behavior of some of these complexes in the presence of dioxygen and the comparison with cytochrome P450 are described.  相似文献   

13.
New dinuclear copper(II) complexes with azomethines and hydrazones, which were produced by condensation of substituted salicylaldehyde derivatives with 1,3-diaminopropan-2-ol or carbo(thiocarbo) hydrazide, were studied. The structures of the [Cu2L(μ-CH2ClCOO)(CH3OH)]·(CH3OH) (L = C17H15N2O3) and [Cu2L2(Cl3CCO)(CH3OH)]·H2O (L2 = C32H42N4O3) complexes were established by X-ray diffraction. The magnetic properties of these complexes, including the influence of the nature of the substituents in the ligands on exchange interactions, were studied.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 592–596, March, 2005.  相似文献   

14.
A new 1,3,4‐oxadiazole bridging bent organic ligand, 2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole, C28H24N4O3, L, has been used to create three novel one‐dimensional isomorphic coordination polymers, viz. catena‐poly[[[dichloridomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgCl2(C28H24N4O3)]·CH3OH}n, catena‐poly[[[dibromidomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgBr2(C28H24N4O3)]·CH3OH}n, and catena‐poly[[[diiodidomercury(II)]‐μ‐2,5‐bis{5‐methyl‐2‐[(4‐pyridyl)methoxy]phenyl}‐1,3,4‐oxadiazole] methanol monosolvate], {[HgI2(C28H24N4O3)]·CH3OH}n. The free L ligand itself adopts a cis conformation, with the two terminal pyridine rings and the central oxadiazole ring almost coplanar [dihedral angles = 5.994 (7) and 9.560 (6)°]. In the HgII complexes, however, one of the flexible pyridylmethyl arms of ligand L is markedly bent and helical chains are obtained. The HgII atom lies in a distorted tetrahedral geometry defined by two pyridine N‐atom donors from two L ligands and two halide ligands. The helical chains stack together via interchain π–π interactions that expand the dimensionality of the structure from one to two. The methanol solvent molecules link to the complex polymers through O—H...N and O—H...O hydrogen bonds.  相似文献   

15.
Three newly designed containing‐PMBP N2O2‐donors complexes, [Co(L1)(CH3OH)2] ( 1 ), [{Zn(L2)(CH3OH)(H2O)}3] ( 2 ) and [Cu4(L2)4]?2CHCl3 ( 3 ), have been synthesized and structurally characterized using elemental analyses, infrared and UV–visible spectroscopies and single‐crystal X‐ray diffraction. X‐ray crystal structure determinations revealed that 1 consists of one Co(II) atom, one completely deprotonated (L1)2? unit and two coordinated methanol molecules. Complex 2 consists of three Zn(II) atoms, three completely deprotonated (L2)2? units, three coordinated methanol molecules and three coordinated water molecules. However, 3 includes four Cu(II) atoms, four completely deprotonated (L2)2? units and two crystallization chloroform molecules. The Co(II) and Zn(II) atoms in the structures of 1 and 2 adopt slightly distorted octahedral geometries. While, Cu(II) atoms in 3 can be best described as adopting slightly distorted square planar geometries. Complex 2 is a novel structure, and the ratio of H2L2 to Zn(II) atom is 3:3. In addition, two‐, three‐ and three‐dimensional supramolecular structures were constructed for 1 , 2 and 3 . Most importantly, Hirshfeld surface analysis of 1 , 2 and 3 was conducted and fluorescence properties were investigated.  相似文献   

16.
The reaction of [FeL(MeOH)2] {where L is the tetradentate N2O2‐coordinating Schiff base‐like ligand (E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoate)(2−) and MeOH is methanol} with 3‐aminopyridine (3‐apy) in methanol results in the formation of the octahedral complex (3‐aminopyridine‐κN1){(E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoato)(2−)‐κ4O3,N,N′,O3′}(methanol‐κO)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3‐apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octahedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin‐crossover behavior. An infinite two‐dimensional hydrogen‐bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T‐dependent susceptibility measurements revealed that the complex remains in the high‐spin state over the entire temperature range investigated.  相似文献   

17.
Because of its versatile coordination modes and strong coordination ability, the mercaptoacetic acid substituted 1,2,4‐triazole 2‐{[5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetic acid ( H2L ) was synthesized and characterized. Treatment of H2L with cobalt and nickel acetate afforded the dinuclear complexes {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[aqua(methanol‐κO)cobalt(II)] methanol disolvate, [Co2(C9H6N4O2S)2(CH3OH)2(H2O)2]·2CH3OH ( 1 ), and {μ‐3‐[(carboxylatomethyl)sulfanyl]‐5‐(pyridin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐ido‐κ2N1,N5:N2,O}bis[diaquanickel(II)] methanol disolvate dihydrate, [Ni2(C9H6N4O2S)2(H2O)4]·2CH3OH·2H2O ( 2 ), respectively. Complex 1 crystallized in the monoclinic space group P21/c, while 2 crystallized in the tetragonal space group I41/a. Single‐crystal X‐ray diffraction studies revealed that H2L is doubly deprotonated and acts as a tetradentate bridging ligand in complexes 1 and 2 . For both of the obtained complexes, extensive hydrogen‐bond interactions contribute to the formation of their three‐dimensional supermolecular structures. Hirshfeld surface analysis was used to illustrate the intermolecular interactions. Additionally, the urease inhibitory activities of 1 , 2 and H2L were investigated against jack bean urease, where the two complexes revealed strong urease inhibition activities.  相似文献   

18.
The title compound, [Cu(ClO4)2(C4H9N3O2)2][Cu(C4H9N3O2)2(CH4O)2](ClO4)2·2CH3OH, comprises two independent CuII species lying on different inversion sites. In the Cu complexes, a distorted octa­hedral geometry arises (from basic square‐planar N4 coordination) from the weak coordination of two perchlorate ions (as Cu—O) in one species and two methanol mol­ecules in the other (also as Cu—O). Inter­actions between the O atoms of the perchlorate anions or methanol groups and the imide or amine NH groups afford an extensive inter­molecular hydrogen‐bonding network.  相似文献   

19.
The formation of iron(III) complexes with chelating azidokojate anions L was investigated in aqueous solutions as a function of the pH and the c(Fe3+):c(HL) molar ratio. Based on the stability constants, the distribution among the above complexes, [Fe(H2O)6]3+, and [Fe(H2O)5(OH)]2+ were calculated in solutions of various compositions. The complexes are redox stable in aqueous solutions both in the dark and in visible laboratory light. Properties of the investigated azidokojic acid and its iron(III) complexes are compared with those required for therapeutic applications as alternative iron chelators.  相似文献   

20.
Reaction of 2,2′‐bi­pyridine (bpy) and copper(II) nitrate in methanol results in two complexes, namely light‐blue bis(2,2′‐bi­pyridine)­nitrato­copper(II) nitrate methanol solvate, [Cu(NO3)(C10H8N2)2]NO3·CH3OH, (I), which is unstable in air, and the product of its decomposition, catena‐poly­[[[bis(2,2′‐bi­pyridine)copper(II)]‐μ‐nitrato‐O:O′] nitrate], {[Cu(NO3)(C10H8N2)2]NO3}n, (II). The crystal structures of both compounds were determined from one crystal at room temperature. Later, the structure of (I) was redetermined at low temperature. In (I) and (II), the Cu atom is coordinated by two bpy and one or two nitrate ions, respectively. The second nitrate ion in (I), along with the methanol solvent mol­ecule, is found in the outer coordination sphere, not bonded to Cu. The nitrate in (I) is chelating, while in (II), it bridges (bpy)2Cu complexes, forming a one‐dimensional chain structure. The Cu cation in (II) lies on a twofold axis and the uncoordinated NO3? ion is located close to a twofold axis and is therefore disordered. Compound (I) converts into (II) upon loss of solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号