首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
Reaction of cis-[Ptph2(SMe2)2] with Me2PCH2PMe2 (dmpm) gave cis-[PtPh2(dmpm-P)2] (1) or cis,cis-[Pt2Ph4(μ-dmpm)2] (2) and reaction of 1 with [Pt2Me4(μ-SMe2)2] gave cis,cis-[Ph2Pt(μ-dmpm)2PtMe2] (3). Reaction of 1 with trans-[PtClR(SMe2)2] gave cis,trans-[Ph2Pt(μ-dmpm)2PtClR], R = Me (5) or Ph (6), and in polar solvents, these isomerized to give [Ph2Pt(μ-dmpm)2PtR]+Cl. When R = Me, further isomerization via the phenyl group transfer gave [PhMePt(μ-dmpm)2PtPh]+Cl. Oxidative addition of methyl iodide occurred reversibly at the cis-[PtMe2P2 unit of 3 to give cis,fac-[Ph2Pt(μ-dmpm)2PtIMe3] but complex 2 failed to react with MeI. A comparison with similar known complexes of Ph2PCH2PPh2 (dppm) is made and differences are attributed primarily to the lower steric hindrance of dmpm.  相似文献   

2.
The two ion-pair complexes, [pyH]2[Zn(mnt)2] (1) and [4,4′-bipyH2]-[Zn(mnt)2] (2), were synthesized, where mnt2− denotes maleonitriledithiolate, and [pyH]+, [4,4′-bipyH2]2+ represent pyridinium and diprotonated 4,4′-bipyridinium, respectively. Their single crystal structures show that there are strong bifurcated H-bonding interactions between the cations of the pyridinium derivative and the [Zn(mnt)2]2− anions in both 1 and 2. The bifurcated H-bonding interactions between the N–H of the pyridiniums and the CN groups of the mnt2− ligands give rise to a 2D layered H-bonding network, the adjacent layers come together in such way as mutual embrace to give a tight pack, thus 2D hydrogen-bonding sheets further develop into 3D H-bonding networks through weak C–HS and ππ stacking interactions in 1. As for 2, the cations and anions connect into several types of H-bonding macrorings ([2+2], [3+3] and [4+4]), these H-bonding macrorings fuse to extend into 2D layered structure, the interpenetration between [3+3] and [4+4] type H-bonding macrorings in the adjacent layers give further rise to novel 3D extended H-bonding networks, in which there are clearly parallel stacks of cations and the chelate rings of anions.  相似文献   

3.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

4.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

5.
N2O gas phase chemistry has been examined as it relates to the problem of ultrathin film silicon oxynitridation for semiconductor devices. Computational and analytical kinetics studies are presented that demonstrate: (i) there are 5 main reactions in the decomposition of N2O, (ii) the gas composition over a 1000K – 1400K temperature range is as follows: N2 (65.3 − 59.3%); O2 (32.0 − 25.7%); NO (2.7 − 15.0%), (iii) the N2O decomposition obeys first-order kinetics, and the initial rate law for N2O decomposition is Rinit = 2k1[N2O] which rapidly changes to Rlate = k1[N2O] as the reaction proceeds, (iv) the branching ratio for the two reactions: N2O + O → 2NO and N2O + O → N2 + O2 lies between 0.1 and 0.5 (0.1 < < 0.5) and varies with conditions, (v) the apparent activation energy for the decomposition of N2O is 2.5 eV/molecule (2.4×102 kJ/mole), (vi) the rate law for NO formation is R = k1N2O], and (vii) the apparent activation energy for the formation of NO is 2.4 eV/molecule (2.3×102 kJ/mole).  相似文献   

6.
A mixture of NF3 and Ar is passed through an rf discharge in a flow-system to produce, among other species, F and NF2. When H2, D2, or CH4 are added downstream, reactions with F atoms produce vibrationally excited HF or DF together with H, D, or CH3. The latter free radicals can react with NF2, probably by an elimination reaction to produce electronically excited NF: NF2(2B1) + H(D, CH3) → HF*(DF* + NF(a1Δ). A vibrational-to-electronic energy transfer process between the products of this reaction then produces the next higher state of NF: HF(ν 2) + NF(a1Δ) → HF(ν−2) + NF(b1Σ+). A similar transfer process has also been found between the electronically excited a1Δ states of O2 and NF: O2(a1Δ) + NF(a1Δ) → O2(X3Σ) + NF(b1Σ+). The H or D atoms but not the CH3 radicals are then found to react with either NF(a1Δ) or NF(X3Σ) to produce electronically excited N(2D) atoms, which in turn react with the NF(a1Δ) molecules to produce N2(B3Πg). The observed nitrogen first positive radiation has been demonstrated to be produced entirely by this reaction mechanism rather than by the N(4S) recombination that accounts for the Rayleigh afterglow. In addition, the occurrence of the reaction N(2D) + N2O → NO(B2Πr) + N2 (X1Σ+g) has been verified. Finally we have observed emission at 3344 Å, which we attribute to the NF(A3Π), which has not been previously reported.  相似文献   

7.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

8.
The thermal decomposition of CaOsO3 by differential thermal analyses, thermogravimetry and X-ray powder diffraction has been studied. In nitrogen CaOsO3 decomposes at 880 ± 10°C into CaO, osmium metal and oxygen due to the reaction CaOsO3 → CaO + Os + O2. In static air the decomposition occurs in three stages: 2CaOsO3 + 1/2O2 → Ca2Os2O7 (in region 775–808°C), Ca2Os2O7 → Ca2Os2O6,5 + 1/4O2 (at a temperature interval of 850–1000°C) and in the third stage Ca2Os2O6,5 → 2CaO + OsO4 ÷ 1/4 O2 (at 1005 ± 5°C). The first intermediate Ca2Os2O7 is isostructural with orthorhombic Ca2Nb2O7 and its cell parameters are: a0 = 3.745 Å, b0 = 25.1 Å, c0 = 5.492 Å, Z = 4, space group Cmcm or Cmc2. Ca2Os2O7 exhibits metallic conductivity and its electrical resistivity is 4.6 × 10−2 ohm-cm at 296K.  相似文献   

9.
The dinuclear μ-oxomolybdenum(V) complexes [Mo2O3(PyS)4] (1), [Mo2O3(PySe)4] (2) and [Mo2O3(4-CF3-PymS)4] (3) were obtained by similar reactions of the [MoO2Cl2(DME)] precursor with the corresponding heterocyclic bidentate (N,X) ligands, X = S, Se, where PyS, PySe and 4-CF3-PymS are the anions of pyridine-2-thione, pyridine-2-selenolato and 4-trifluoromethyl-2-pyrimidinthiol, respectively. All compounds were characterized by elemental analysis, IR, NMR, EI-MS spectroscopy and X-ray diffraction. The crystal structures of 1–3 all include the common [Mo2O3]4+ core. Compounds 1 and 2 are isostructural. The catalytic oxo-transfer properties of the molybdenum(V) compounds 1 and 2 were studied by the use of PPh3 in DMSO with a considerably higher catalytic activity for the thionato containing complex 1 than for its selenolato containing analogue 2.  相似文献   

10.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

11.
Reaction of [Ru3(CO)12 with (CF3)2P---P(CF3)2 in p-xylene at 140°C yielded the compounds [Ru4(CO)13{μ-P(CF3)2}2] (1), [Ru4(CO)14{μ-P(CF3)2}2] (2) and [Ru4(CO)11{μ-P(CF3)2}4] (3). Reaction with [(μ-H)4Ru4(CO)12] under similar conditions yielded [(μ-H)3Ru4(CO)12{μ-P(CF3)2}] (4). All four compounds have been characterised by X-ray crystallography. The fluxional behaviour of the hydrides in 4 has also been studied by variable-temperature NMR spectroscopy. Compounds 1, 2 and 4 were also obtained from the reactions of Ru3(CO)12 with (CF3)2PH in dichloromethane at 80°C.  相似文献   

12.
The reduction of colourless [LReVIIO3]Br in an acetone-water mixture (6: 1) with zinc amalgam affords green, air-sensitive [LReVO2Br] which forms a violet complex [LReO(μ-O)2ReOBr2]in aqueous solution (L = 1,4,7-triazacyclononane; C6H15N3). From a similar reduction of [LReO3]ReO4 the violet neutral complex [LReO(μ-O)2ReO(ReO4)2] was obtained. [LReO3]+ is deprotonated in alkaline solution (pKa = 10.3 + 0.2, 25°C) and [(C6H14N3)ReO3] was isolated as a yellow solid. The latter amido rhenium(VII) compound reacted in dimethylformamide with R---X (R = CH3, benzyl; X = Cl), affording at the cyclic amine, N,N′,N″-trisalkylated complexes of the type [L′ReO3]X. The monomeric rhenium(V) complexes [LReOX2]X (X = Cl, Br, I) were obtained from the reaction of [n-Butyl4N]ReOX4 and L in acetonitrile. IR, UV-vis, 17O NMR spectra of these compounds are reported.  相似文献   

13.
The bis(μ3-ethylidyne) tricobalt cluster [(CpCo)33-CCH3)2] (1b) is protonated by trifluoroacetic acid to give the dicobalt edge-protonated cation [H(CpCo)33-CCH3)2]+ [lb + H]+. Protonation of the μ3-ethylidyne tetracobalt cluster hydride [H(CpCo)43-CCH3)] (3) takes place in two consecutive steps. At low temperature [H2(CpCo)43-CCH3)]+ [3 + H]+ is formed first, and is then slowly converted into [H3(CpCo)43-CCH3)]2+ [3 + 2H]2+ by an excess of acid. As judged by the 1H NMR data and the crystal structure of [3 + X]+[(CF3COO)2X] (X = H or D) the endo hydrogens in [3 + H]+ and [3 + 2H]2+ occupy μ3-(Co3) face capping hydridic positions. The cations [1b + H]+ and [3 + H]+ show hydride fluxionality in solution, which in the case of [3 + H]+ can be frozen out on the NMR timescale at low temperature (ΔG (203 K) = 40.8 kJ/mol). The structure of [3 + X]+ [(CF3COO)2X] (X = H or D) was determined by X-ray crystallography. One of the hydrides/deuterides is located on the crystallographic mirror plane, capping a tricobalt face of the cluster cation. The other endo hydrogen atom is believed to be disordered between the other two μ3-(Co3) sites, which are related by space group symmetry. Deuteronation of 3 shows a strong normal kinetic deuterium isotope effect. From the temperature independence of the 1H NMR spectrum of [3 + 2D]2+ a non-fluxional solution structure can be inferred. In all the systems studied, hydridic (μ2- or μ3-) sites are thermodynamically preferred to possible isomeric agostic CoHC or Co2HC sites for the endo hydrogens. Agostic interactions cannot, however, be ruled out in transient intermediates during the course of the protonations.  相似文献   

14.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

15.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

16.
A rapid single-step method for the electrosynthesis of chloro and bromo complexes of palladium(II and IV), viz. M2[PdX4] and M2[PdX6], by the dissolution of a palladium anode in chloride or bromide containing media is described. Electrolysis of dilute HX solution in the presence of pyridine, 2,2′-bipyridyl or 1,10-phenanthroline gives rise to non-electrolytes, e.g. trans-[PdX2(py)2], [PdX2(bipy)] and [PdX2(phen)]. Anodic oxidation of palladium in HX medium in the presence of acetonitrile and benzonitrile also gives the non-electrolytes trans-[PdX2(CH3CH2NH2)2] and trans-[PdX2(C6H5CH2NH2)2], respectively.  相似文献   

17.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

18.
The 60-electron tetrahedral clusters W2Ir2(μ-L)(CO)85-C5H4Me)2 [L=dppe (2), dppf (3)] have been prepared from reaction between W2Ir2(CO)105-C5H4Me)2 (1) and the corresponding diphosphine in 52 and 66% yields, respectively. A structural study of 2 reveals that three edges of a WIr2 face are spanned by bridging carbonyls, that the iridium-ligated diphosphine coordinates diaxially and that the tungsten-bound methylcyclopentadienyls coordinate axially and apically with respect to the plane of bridging carbonyls. A structural study of 3 reveals that the dppf ligand bridges an Ir---Ir bond which is also spanned by a bridging carbonyl; tungsten-ligated methylcyclopentadienyl ligands and terminal carbonyls result in electronic asymmetry (17e and 19e iridium atoms) in the electron-precise cluster. Both clusters show two reversible one-electron oxidation processes and an irreversible two-electron reduction; the dppf-containing cluster 3 has a further, irreversible, one-electron oxidation process. UV–vis-NIR spectroelectrochemical studies of the 2→2+→22+ progression reveal the appearance of a low-energy transition on oxidation to 2+ which persists on further oxidation to 22+.  相似文献   

19.
Miho Fujita  R. D. Gillard 《Polyhedron》1988,7(24):2731-2742
Stable aqueous solutions of the green ion [Co(sa1)3]3− (sa1 = dianion, C6H4( )(CO ), of salicylic acid, 2-hydroxybenzoic acid) are obtained from [Co(NH3)5 C1]C12 and an excess of salicylic acid. Several salts, [C][Co(sa1)3] have been characterized, where C = [Co(NH3)6]3+ and [M(en)3]3+ (M = Co or Rh, EN = 1,2-diamino-ethane). By using (+)-[Rh(en)3]3+, optical resolution via less soluble diastereoisomeric salts has been achieved, and isomerization and racemization have been studied. Resolved tris-malonatocobaltate(III) has been used as a model. A novel thermochromism (77-293 K) in solid Δ(+)-[Rhen3]Λ[Co(sa1)3 is described.  相似文献   

20.
The synthesis and reactivity of {(η5-C5H4SiMe3)2Ti(CCSiMe3)2} MCl2 (M = Fe: 3a; M = Co: 3b; M = Ni: 3c) is described. The complexes 3 are accessible by the reaction of (η5-C5H4SiMe3) 2Ti(CSiMe3)2 (1) with equimolar amounts of MCl2 (2) (M = Fe, Co, Ni). 3a reacts with the organic chelat ligands 2,2′-dipyridyl (dipy) (4a) or 1,10-phenanthroline (phen) (4b) in THF at 25°C to afford in quantitative yields (η5-C5H4SiMe3)2Ti(CSiMe3)2 (1) and [Fe(dipy)2]Cl2 (5a) or [Fe(phen)2]Cl2 (5b). 1/n[CuIHal]n (6) or 1/n[AgIHal]n (7) (Hal = Cl, Br) react with {(η5 -C5H4SiMe3)2Ti(CCSiMe3)2}FeCl2 (3a), by replacement of the FeCl2 building block in 3a, to yield the compounds {(η5-C5H4SiMe3)2Ti(C CSiMe3)2}CuIHal (8) or {(η5-C5H4SiMe3)2Ti(CSiMe3)2}AgIHal (9) (Hal = Cl, Br), respectively. In 8 and 9 each of the two Me3SiCC-units is η2-coordinated to monomeric CuI Hal or AgIHal moieties. Compounds 8 and 9 can also be synthesized by the reaction of (η5-C5H4SiMe3)2 Ti(CSiMe3)2 (1) with 1/n[CuIHal]n (6) or 1/n [AgIHal]n (7) in excellent yields. All new compounds have been characterized by analytical and spectroscopic data (IR, 1H-NMR, MS). The magnetic moments of compounds 3 were measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号