首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various new thermally air- and water-stable alkyl and aryl analogues of (acac-O,O)2Ir(R)(L), R-Ir-L (acac-O,O = kappa2-O,O-acetylacetonate, -Ir- is the trans-(acac-O,O)2Ir(III) motif, R = CH3, C2H5, Ph, PhCH2CH2, L = Py) have been synthesized using the dinuclear complex [Ir(mu-acac-O,O,C3)-(acac-O,O)(acac-C3)]2, [acac-C-Ir]2, or acac-C-Ir-H2O. The dinuclear Ir (III) complexes, [Ir(mu-acac-O,O,C3)-(acac-O,O)(R)]2 (R = alkyl), show fluxional behavior with a five-coordinate, 16 electron complex by a dissociative pathway. The pyridine adducts, R-Ir-Py, undergo degenerate Py exchange via a dissociative mechanism with activation parameters for Ph-Ir-Py (deltaH++ = 22.8 +/- 0.5 kcal/mol; deltaS++ = 8.4 +/- 1.6 eu; deltaG++298 K) = 20.3 +/- 1.0 kcal/mol) and CH3-Ir-Py (deltaH++ = 19.9 +/- 1.4 kcal/mol; deltaS++ = 4.4 +/- 5.5 eu; deltaG++298 K) = 18.6 +/- 0.5 kcal/mol). The trans complex, Ph-Ir-Py, undergoes quantitatively trans-cis isomerization to generate cis-Ph-Ir-Py on heating. All the R-Ir-Py complexes undergo quantitative, intermolecular CH activation reactions with benzene to generate Ph-Ir-Py and RH. The activation parameters (deltaS++ =11.5 +/- 3.0 eu; deltaH++ = 41.1 +/- 1.1 kcal/mol; deltaG++298 K = 37.7 +/- 1.0 kcal/mol) for CH activation were obtained using CH3-Ir-Py as starting material at a constant ratio of [Py]/[C6D6] = 0.045. Overall the CH activation reaction with R-Ir-Py has been shown to proceed via four key steps: (A) pre-equilibrium loss of pyridine that generates a trans-five-coordinate, square pyramidal intermediate; (B) unimolecular, isomerization of the trans-five-coordinate to generate a cis-five-coordinate intermediate, cis-R-Ir- square; (C) rate-determining coordination of this species to benzene to generate a discrete benzene complex, cis-R-Ir-PhH; and (D) rapid C-H cleavage. Kinetic isotope effects on the CH activation with mixtures of C6H6/C6D6 (KIE = 1) and with 1,3,5-C6H3D3 (KIE approximately 3.2 at 110 degrees C) are consistent with this reaction mechanism.  相似文献   

2.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

3.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

4.
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Pt(PBu(t)(3))(2) at room temperature yielded the mixed-metal cluster complex PtRu(5)(CO)(15)(PBu(t)(3))(C), 2, in 52% yield. Compound 2 consists of a mixture of two interconverting isomers in solution. One isomer, 2A, can be isolated by crystallization from benzene/octane solvent. The second isomer, 2B, can be isolated by crystallization from diethyl ether. Both were characterized crystallographically. Isomer 2A consists of a square pyramidal cluster of five ruthenium atoms with a phosphine-substituted platinum atom spanning the square base. Isomer 2B consists of a square pyramidal cluster of five ruthenium atoms with a phosphine-substituted platinum atom on an edge on the square base. The two isomers interconvert rapidly on the NMR time scale at 40 degrees C, deltaG(313)++ = 11.4(8) kcal mol(-1), deltaH++ = 8.8(5) kcal mol(-1), deltaS++ = -8.4(9) cal mol(-1) K(-1). The reaction of Pd(PBu(t)(3))(2) with compound 1 yielded two new cluster complexes: PdRu(5)(CO)(15)(PBu(t)(3))(mu(6)-C), 3, in 50% yield and Pd(2)Ru(5)(CO)(15)(PBu(t)(3))(2)(mu(6)-C), 4, in 6% yield. The yield of 4 was increased to 47% when an excess of Pd(PBu(t)(3))(2) was used. In the solid state compound 3 is structurally analogous to 2A, but in solution it also exists as a mixture of interconverting isomers; deltaG(298)++ = 10.6(6) kcal mol(-1), deltaH++ = 9.7(3) kcal mol(-1), and deltaS++ = -3(1) cal mol(-1) K(-1) for 3. Compound 4 contains an octahedral cluster consisting of one palladium atom and five ruthenium atoms with an interstitial carbido ligand in the center of the octahedron, but it also has one additional Pd(PBu(t)(3)) grouping that is capping a triangular face of the ruthenium cluster. The Pd(PBu(t)(3)) groups in 4 also undergo dynamical interchange that is rapid on the NMR time scale at 25 degrees C; deltaG(298)++ = 11(1) kcal mol(-1), deltaH++ = 10.2(4) kcal mol(-1), and deltaS++ = -3(2) cal mol(-1) K(-1) for 4.  相似文献   

5.
The haptotropic rearrangement of dinuclear metal carbonyl species on the conjugate pi-ligand of (micro2,eta3:eta5-4,6,8-trimethylazulene)M2(CO)5 [M = Fe (3) and Ru (4)] was investigated in detail both experimentally and theoretically. The complexes, 3 and 4, were synthesized and characterized by spectroscopy and crystallography. The spin saturation transfer technique of 1H NMR was used to measure the rate constant k of the haptotropic isomerization between the two enantiomers of 3 and 4, from which thermodynamic parameters were determined: (3; deltaS(double dagger) = -7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 22 +/- 1 cal mol(-1), deltaG(double dagger)373 = 25 +/- 1 cal mol(-1)), (4; deltaS(double dagger) = 7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 25 +/- 1 cal mol(-1), deltaG(double dagger)373 = 23 +/- 1 cal mol(-1)). DFT calculations (the B3LYP, B1B95 and PBE1PBE methods) were also carried out using the CEP-31G and cc-pVDZ as the basis set of the transition metal and other elements, respectively, by which both ground state and transition state structures were optimized for the haptotropic rearrangement of 3 and 4. The potential energy surface for these reactions suggests that the reaction involves the conversion of the coordination mode from micro2eta3,eta5- (ground state) to micro2,eta1,eta5- (transition state). Mechanistic consideration, in particular that of differences in transition states between the diiron and diruthenium complexes, is also described.  相似文献   

6.
The enantiomers of the perfluorodiether "compound B" [2-(fluoromethoxy)-3-methoxy-1,1,1,3,3-pentafluoropropane], a decomposition product of the inhalational anesthetic sevoflurane [2-(fluoromethoxy)-1,1,1,3,3,3-hexafluoropropane], were separated by gas chromatography on octakis(3-O-butanoyl-2,6-di-O-n-pentyl)-gamma-cyclodextrin (Lipodex E), dissolved in polysiloxane PS 255 (30% w/w), with an unexpectedly high separation factor of alpha = 10.6 at 26 degrees C. Using the concept of the retention increment R', non-enantioselective and enantioselective contributions to retention were separated and thus reliable thermodynamic parameters of enantioselectivity, i.e. - deltaS,R(deltaG) = 5.7 (0.05) kJ/mol at 303 K, - deltaS,R(deltaH) = 20.1 (0.64) kJ/mol, deltaS,R(deltaS) = -47.4 (2.0) J/K mol and T(isoenant) = 424 (30) K or approximately 150 degrees C, were determined by temperature-dependent measurements. The enantiomeric bias represents the largest values ever measured in enantioselective gas chromatography. An equation is presented which allows calculation of the non-enantioselective contributions to retention from measurements at two arbitrary concentrations of Lipodex E in polysiloxane. Surprisingly, the enantioselectivity is greatly reduced when employing the beta-cyclodextrin analogue and breaks down completely with the alpha-cyclodextrin analogue of Lipodex E.  相似文献   

7.
Chiral 3,3'-bis(trisarylsilyl)-substituted binaphtholate rare earth metal complexes (R)-[Ln{Binol-SiAr3}(o-C6H4CH2NMe2)(Me2NCH2Ph)] (Ln = Sc, Lu, Y; Binol-SiAr3 = 3,3'-bis(trisarylsilyl)-2,2'-dihydroxy-1,1'-binaphthyl; Ar = Ph (2-Ln), 3,5-xylyl (3-Ln)) and (R)-[La{Binol-Si(3,5-xylyl)3}{E(SiMe3)2}(THF)2] (E = CH (4a), N (4b)) are accessible via facile arene, alkane, and amine elimination. They are efficient catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, giving TOF of up to 840 h(-1) at 25 degrees C for 2,2-diphenyl-pent-4-enylamine (5c) using (R)-2-Y. Enantioselectivities of up to 95% ee were achieved in the cyclization of 5c with (R)-2-Sc. The reactions show apparently zero-order rate dependence on substrate concentration and first-order rate dependence on catalyst concentration, but rates depend on total amine concentrations. Activation parameters for the cyclization of pent-4-enylamine using (R)-2-Y (deltaH(S)(double dagger) = 57.4(0.8) kJ mol(-1) and deltaS(S)(double dagger) = -102(3) J K(-1) mol(-1); deltaH(R)(double dagger) = 61.5(0.7) kJ mol(-1) and deltaS(R)(double dagger) = -103(3) J K(-1) mol(-1)) indicate a highly organized transition state. The binaphtholate catalysts were also applied to the kinetic resolution of chiral alpha-substituted aminoalkenes with resolution factors f of up to 19. The 2,5-disubstituted aminopentenes were formed in 7:1 to > or = 50:1 trans diastereoselectivity, depending on the size of the alpha-substituent of the aminoalkene. Rate studies with (S)-1-phenyl-pent-4-enylamine ((S)-15e) gave the activation parameters for the matching (deltaH(double dagger) = 52.2(2.8) kJ mol(-1), deltaS(double dagger) = -127(8) J K(-1) mol(-1) using (S)-2-Y) and mismatching (deltaH(double dagger) = 57.7(1.3) kJ mol(-1), deltaS(double dagger) = -126(4) J K(-1) mol(-1) using (R)-2-Y) substrate/catalyst combination. The absolute configuration of the Mosher amide of (2S)-2-methyl-4,4-diphenyl-pyrrolidine and (2R)-methyl-(5S)-phenyl-pyrrolidinium chloride, prepared from (S)-15e, were determined by crystallographic analysis. Catalyst (R)-4a showed activity in the anti-Markovnikov addition of n-propylamine to styrene.  相似文献   

8.
Titanium-oxygen bonds derived from stable nitroxyl radicals are remarkably weak and can be homolyzed at 60 degrees C. The strength of these bonds depends sensitively on the ancillary ligation at titanium. Direct measurements of the rate of Ti-O bond homolysis in Ti-TEMPO complexes Cp2TiCl(TEMPO) (3) and Cp2TiCl(4-MeO-TEMPO) (4) (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-MeO-TEMPO = 2,2,6,6-tetramethyl-4-methoxypiperidine-N-oxyl) were conducted by nitroxyl radical exchange experiments. Eyring plots gave the activation parameters, deltaH++ = 27(+/- 1) kcal/mol, deltaS++ = 6.9(+/- 2.3) eu for 3 and deltaH++ = 28(+/- 1) kcal/mol, deltaS++ = 9.0(+/- 3.0) eu for 4, consistent with a process involving the homolysis of a weak Ti-O bond to generate the transient Cp2Ti(III)Cl and the nitroxyl radical. Thermolysis of the titanocene TEMPO complexes in the presence of epoxides leads to the Cp2Ti(III)Cl-mediated ring-opening of the epoxide followed by trapping by the nitroxyl radical. The X-ray crystal structure of the Ti-TEMPO derivative, Cp2TiCl(4-MeO-TEMPO) (4), is reported. DFT (B3LYP/6-31G*) calculations and experimental studies reveal that the strength of the Ti-O bond decreases dramatically with the number of cyclopentadienyl groups on titanium. The calculated Ti-O bond strength of the monocyclopentadienyl complex 2 is 43 kcal/mol, whereas that of the biscyclopentadienyl complex 3 is 17 kcal/mol, a difference of 26 kcal/mol. These studies reveal that the strength of these Ti-O bonds can be tuned over an interesting and experimentally accessible temperature range by appropriate ligation on titanium.  相似文献   

9.
Platinum(II) and palladium(II) complexes of the potentially hexadentate P,N-donor ligand family Ar2P-X-PAr2 (X = (CH2)2 [dmape], cyclic-C5H8 [dmapcp]; Ar = o-N,N-dimethylanilinyl) are described. In CH2Cl2, the dmape complexes exist as equilibrium mixtures of MCl2(P,P'-dmape) and [MCl(P,P',N-dmape)]Cl isomers (M = Pd, Pt), governed by deltaH(o) = -19 +/- 4 kJ mol(-1) and deltaS(o) = -100 +/- 30 J mol(-1) K(-1) for M = Pt, and deltaH(o) = -11 +/- 7 kJ mol(-1) and deltaS(o) = -60 +/- 20 J mol(-1) K(-1) for M = Pd. The water-soluble dmapcp complexes exist solely in the [MCl(P,P',N-dmapcp)]Cl form, but the free and coordinated anilinyl rings in these complexes are in slow diastereoselective exchange. X-ray crystal structures for MCl2(P,P'-dmape) (M = Pd, Pt), and the [PdCl(P,P',N-dmape)]+ and [PtCl(P,P',N-dmapcp)]+ cations, are presented. Some of the complexes show marginal activity in water for the catalyzed hydration of maleic to malic acid, giving about 6-7% conversion in 24 h at 100 degrees C and substrate:catalyst loadings of 100:1. Attempts to synthesize a PdCl(P,P',N-dmapm)+ species led instead to isolation of [Pd(mu-Cl)(P,P'-dmapm)]2[PF6]2 (dmapm = Ar2PCH2Ar2).  相似文献   

10.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

11.
A new tridentate ligand, PYAN, is employed to investigate solvent influences for dioxygen reactivity with [Cu(PYAN)(MeCN)]B(C(6)F(5))(4) (1). Stopped-flow kinetic studies confirm that the adducts [[u(II)(PYAN)]2)(O(2))][B(C(6)F(5))(4)](2) (2(Peroxo)) and [[u(III)(PYAN)]2)(O)(2)][B(C(6)F(5))(4)](2) (2(Oxo)) are in rapid equilibrium. Thermodynamic parameters for the equilibrium between 2(Peroxo) and 2(Oxo) re as follows: THF, deltaH degrees approximately -15.7 kJ/mol, deltaS degrees approximately -83 J/K.mol; acetone, deltaH degrees approximately -15.8 kJ/mol, deltaS degrees approximately -76 J/K.mol. UV-visible absorption and resonance Raman spectroscopic signatures demonstrate that the equilibrium is highly solvent dependent; the mixture is mostly 2(Peroxo) in CH(2)Cl(2), but there are significantly increasing quantities of 2(Oxo) along the series methylene chloride --> diethyl ether --> acetone --> tetrahydrofuran (THF). Copper(II)-N(eq) stretches (239, 243, 244, and 246 cm(-)(1) in CH(2)Cl(2), Et(2)O, acetone, and THF, respectively) are identified for 2(Peroxo), but they are not seen in 2(Oxo), revealing for the first time direct evidence for solvent coordination in the more open 2(Peroxo) structure.  相似文献   

12.
The enantiomers of dialkyl 2,3-pentadienedioate undergo interconversion during gas chromatographic separation on chiral stationary phases. In this paper the on-column apparent interconversion kinetic and thermodynamic activation data were determined for dimethyl, diethyl, propylbutyl and dibutyl 2,3-pentadienedioate enantiomers by gas chromatographic separation of the racemic mixtures on a capillary column containing a polydimethylsiloxane stationary phase coupled to 2,3-di-O-methyl-6-O-tertbutyldimethylsilyl-beta-cyclodextrin. A deconvolution method was used to determine the individual enantiomer peak areas and retention times that are needed to calculate the interconversion rate constants and the energy barriers. The apparent rate constants and interconversion energy barriers decrease slightly with an increase in the alkyl chain length of the dialkyl 2,3-pentadienedioate esters. The optimum conformation of the dialkyl 2,3-pentadienedioate molecules, their separation selectivity factors and apparent interconversion enthalpy and entropy data changes with the alkyl chain length. The dependence of the apparent interconversion energy barrier (deltaG(app)(a-->b), deltaG(app)(b-->a)) on temperature was used to determine the apparent activation enthalpy (deltaH(app)(a-->b), deltaH(app)(b-->a)) and apparent entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) (where a denotes the first and b second eluted enantiomer). The comparison of the activation enthalpy and entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) indicated that the interconversion of dialkyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series is an entropy driven process at 160 degrees C. Data obtained for dimethyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series at 120 degrees C (deltaG(app)(a-->b) = 123.3 and deltaG(app)(b-->a) = 124.4 kJ mol(-1)) corresponds (at the 95% confidence interval) with the value of deltaG(#) = 128+/-1 kJ mol(-1) found at this temperature by gas chromatography using a two-dimensional stop flow technique on an empty capillary column [V. Schurig, F. Keller, S. Reich, M. Fluck, Tetrahedron: Asymmetry 8 (1997) 3475].  相似文献   

13.
Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.  相似文献   

14.
The CO exchange on cis-[M(CO)2X2]- with M = Ir (X = Cl, la; X = Br, 1b; X = I, 1c) and M = Rh (X = Cl, 2a; X = Br, 2b; X = I, 2c) was studied in dichloromethane. The exchange reaction [cis-[M(CO)2X2]- + 2*CO is in equilibrium cis-[M(*CO)2X2]- + 2CO (exchange rate constant: kobs)] was followed as a function of temperature and carbon monoxide concentration (up to 6 MPa) using homemade high gas pressure NMR sapphire tubes. The reaction is first order for both CO and cis-[M(CO)2X2]- concentrations. The second-order rate constant, k2(298) (=kobs)[CO]), the enthalpy, deltaH*, and the entropy of activation, deltaS*, obtained for the six complexes are respectively as follows: la, (1.08 +/- 0.01) x 10(3) L mol(-1) s(-1), 15.37 +/- 0.3 kJ mol(-1), -135.3 +/- 1 J mol(-1) K(-1); 1b, (12.7 +/- 0.2) x 10(3) L mol(-1) s(-1), 13.26 +/- 0.5 kJ mol(-1), -121.9 +/- 2 J mol(-1) K(-1); 1c, (98.9 +/- 1.4) x 10(3) L mol(-1) s(-1), 12.50 +/- 0.6 kJ mol(-1), -107.4 +/- 2 J mol(-1) K(-1); 2a, (1.62 +/- 0.02) x 10(3) L mol(-1) s(-1), 17.47 +/- 0.4 kJ mol(-1), -124.9 +/- 1 J mol(-1) K(-1); 2b, (24.8 +/- 0.2) x 10(3) L mol(-1) s(-1), 11.35 +/- 0.4 kJ mol(-1), -122.7 +/- 1 J mol(-1) K(-1); 2c, (850 +/- 120) x 10(3) L mol(-1), s(-1), 9.87 +/- 0.8 kJ mol(-1), -98.3 +/- 4 J mol(-1) K(-1). For complexes la and 2a, the volumes of activation were measured and are -20.9 +/- 1.2 cm3 mol(-1) (332.0 K) and -17.2 +/- 1.0 cm3 mol(-1) (330.8 K), respectively. The second-order kinetics and the large negative values of the entropies and volumes of activation point to a limiting associative, A, exchange mechanism. The reactivity of CO exchange follows the increasing trans effect of the halogens (Cl < Br < I), and this is observed on both metal centers. For the same halogen, the rhodium complex is more reactive than the iridium complex. This reactivity difference between rhodium and iridium is less marked for chloride (1.5: 1) than for iodide (8.6:1) at 298 K.  相似文献   

15.
A simple and sensitive kinetic spectrophotometric method for the determination of perindopril in pharmaceutical preparations is described. The method is based on the interaction of drug with 1-chloro-2,4-dinitrobenzene (CDNB) in dimethylsulfoxide (DMSO) at 40+/-1 degrees C. The reaction is followed spectrophotometrically by measuring the rate of change of the absorbance at 420 nm. Under the optimized experimental conditions, the calibration curve showed a linear relationship over the concentration range of 20-140 microg/ml. The activation parameter such as E(a), deltaH*, deltaS* and deltaG* for this reaction were calculated and found to be 27.31 kJ/mol, 24.69 kJ/mol, -138.84 J/K/mol and 61.50 kJ/mol, respectively. The method has been successfully applied to the determination of perindopril in commercial dosage forms. Statistical comparison of the results with the Abdellatef's spectrophotometric method shows excellent agreement and indicates no significant difference between the methods compared in terms of accuracy and precision.  相似文献   

16.
Houston JR  Yu P  Casey WH 《Inorganic chemistry》2005,44(14):5176-5182
Water exchange from the oxo-centered rhodium(III) trimer, [Rh3(mu3-O)(mu-O2CCH3)6(OH2)3]+, was investigated using variable-temperature (272.8-281.6 K) and variable-pressure (0.1-200 MPa) 17O NMR spectroscopy. The exchange reaction was also monitored at three different acidities (pH = 1.8, 2.9, and 5.7) in which the molecule is in the fully protonated form (pKa = 8.3 (+/-0.2), I = 0.1 M, T = 298 K). The temperature dependence of the pseudo-first-order rate coefficient for water exchange yields the following kinetic parameters: k(ex)298 = 5 x 10(-3) s(-1), deltaH(double dagger) = 99 (+/-3) kJ mol(-1), and deltaS(double dagger) = 43 (+/-10) J K(-1) mol(-1). The enhanced reactivity of the terminal waters, some 6 orders of magnitude faster than water exchange from Rh(H2O)6(3+), is likely due to trans-labilization from the central oxide ion. Also, another contributing factor is the low average charge on the metal ions (+0.33/Rh). Variation of reaction rate with pressure results in a deltaV(double dagger) = +5.3 (+/-0.4) cm3 mol(-1), indicative of an interchange-dissociative (I(d)) pathway. These results are consistent with those published by Sasaki et al. who proposed that water substitution from rhodium(III) and ruthenium(III) oxo-centered trimers follows a dissociative mechanism based on highly positive activation parameters (Sasaki, Y.; Nagasawa, A.; Tokiwa-Yamanoto, A.; Ito, T. Inorg. Chim. Acta 1993, 212, 175-182).  相似文献   

17.
A two step synthesis to the isocyanotris(trifluoromethyl)borate anion, [(CF3)3BNC]-, and its isomerization to the cyanotris(trifluoromethyl)borate anion, [(CF3)3BCN]-, at temperatures above 150 degrees C are presented. In the first step (CF3)3BNCH was obtained by reacting (CF3)3BCO with hydrogen cyanide followed by deprotonation of the HCN adduct with Li[N(SiMe3)2] in toluene. The thermal behavior of K[(CF3)3BNC] and K[(CF3)3BCN] were investigated by differential scanning calorimetry (DSC), and K[BF4] was identified as a major solid decomposition product. The enthalpy of the isocyanide-cyanide rearrangement, deltaH(iso) = -35 +/- 4 kJ mol(-1), was obtained from DSC measurements, and the activation energy, E(a) = 180 +/- 20 kJ mol(-1), from kinetic measurements. The isomerization was modeled as an intramolecular reaction employing DFT calculations at the B3LYP/6-311+G(d) level of theory yielding a reaction enthalpy of deltaH(iso) = -36.1 kJ mol(-1) and an activation energy of E(a) = 155.7 kJ mol(-1). The solid-state structures of K[(CF3)3BNC] and K[(CF3)3BCN] were determined by single-crystal X-ray diffraction. Both salts are isostructural and crystallize in the orthorhombic space group Pnma (no. 62). In the crystals the borate anions possess C(s) symmetry, while for the energetic minimum C3 symmetry is predicted by DFT calculations. The borate anions have been characterized by IR and Raman spectroscopy as well as by NMR spectroscopy. The assignment of the IR and Raman bands is supported by their calculated wavenumbers and intensities. The spectroscopic and structural properties of both borate anions are compared to the properties of the isoelectronic borane carbonyl (CF3)3BCO and the [B(CF3)4]- anion as well as to those of other related species.  相似文献   

18.
The kinetics of hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) by [Cu(Me3tacn)(OH2)2]2+ has been studied by spectrophotometrical monitoring of the release of the p-nitrophenylate ion from BNPP. The reaction was followed for up to 8000 min at constant BNPP concentration (15 microM) and ionic strength (0.15 M) and variable concentration of complex (1.0-7.5 mM) and temperature (42.5-65.0 degrees C). Biphasic kinetic traces were observed, indicating that the complex promotes the cleavage of BNPP to NPP [(p-nitrophenyl)phosphate] and then cleavage of the latter to phosphate, the two processes differing in rate by 50-100-fold. Analysis of the more amenable cleavage of BNPP revealed that the rate of BNPP cleavage is among the highest measured for mononuclear copper(II) complexes and is slightly higher than that reported for the close analogue [Cu(iPr3tacn)(OH2)2]2+. Detailed analysis required the determination of the pKa for [Cu(Me3tacn)(OH2)2]2+ and the constant for the dimerization of the conjugate base to [(Me3tacn)Cu(OH)2Cu(Me3tacn)]2+ (Kdim). Thermodynamic parameters derived from spectrophotometric pH titration and the analysis of the kinetic data were in reasonable agreement. Second-order rate constants for cleavage of BNPP by [Cu(Me3tacn)(OH2)(OH)]+ and associated activation parameters were obtained from initial rate analysis (k = 0.065 M(-1) s(-1) at 50.0 degrees C, deltaH = 56+/-6 kJ mol(-1), deltaS = -95+/-18 J K(-1) mol(-1)) and biphasic kinetic analysis (k = 0.14 M(-1) s(-1) at 50.0 degrees C, deltaH = 55+/-6 kJ mol(-1), deltaS = -92+/-20 J K(-1) mol(-1)). The negative entropy of activation is consistent with a concerted mechanism with considerable associative character. The complex was found to catalyze the cleavage of BNPP with turnover rates of up to 1 per day. Although these turnover rates can be considered low from an application point of view, the ability of the complexes to catalyze phosphate ester cleavage is clearly demonstrated.  相似文献   

19.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   

20.
Kinetic studies of the ruthenium-catalyzed dehydrogenation of 1-(4-fluorophenyl)ethanol (4) by tetrafluorobenzoquinone (7) using the Shvo catalyst 1 at 70 degrees C show that the dehydrogenation by catalytic intermediate 2 is rate-determining with the rate = k[4][1](1/2) and with deltaH++ = 17.7 kcal mol(-1) and deltaS++ = -13.0 eu. The use of specifically deuterated derivative 4-CHOD and 4-CDOH gave individual isotope effects of k(CHOH)/k(CHOD) = 1.87 +/- 0.17 and k(CHOH)/k(CDOH) = 2.57 +/- 0.26, respectively. Dideuterated derivative 4-CDOD gave a combined isotope effect of k(CHOH)/k(CDOD) = 4.61 +/- 0.37. These isotope effects are consistent with a concerted transfer of both hydrogens of the alcohol to ruthenium species 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号