首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclotrons play an important role for production of carrier-free radioisotopes for various applications in the nuclear medicine, industry, ecology and science. Kazakhstan variable energy isochronous cyclotron, K = 50 MeV, is a 150 cm compact-pole 3 sector positive ion machine. It generates different beams of light ions: protons 6-30 MeV, deuterons 12.5-25 MeV, 3He-ions 18.5-62 MeV, alpha-particles 25-50 MeV. In the last years the cyclotron is rather intensively used for radioisotopes production to meet the needs of the Republic of Kazakhstan. The main users of radioisotope products are the Institutions of Healthcare Ministry and enterprises of oil-chemistry, metallurgy, mining, scientific institutes etc. In this submission a survey on radionuclides production including 201Tl, 67Ga, 57Co, 109Cd, 88Y, 85Sr is presented. Practically at all production stages (target preparation, extraction, purification and concentration of a product) original approaches were realized: (1) at target production by means of electrolysis the modes of reverse plating of the material for irradiation and technological layers were finalized, and at 67Ga production new extraction with better characteristics were used; that made the deeper purification from zinc, copper and iron possible. At the development of the technologies of the sealed sources production the following results were obtained: (1) 109Cd production for X-ray fluorescence analysis, and production of experimental samples for Mössbauer sources 57Co at rhodium and palladium backings. The tracers 237Pu, 88Y and 85Sr used for development of the set of methods for 239Pu, 240Pu, 90Sr and 241Am determination in the samples from Semipalatinsk Test Site were produced via nuclear reactions with alpha-particles on 235U and protons on 88Sr, 85Rb targets. Produced radiopharmaceutical preparations 201Tl chloride and 67Ga citrate are supplied to medical centers of Almaty.  相似文献   

2.
《Solid State Sciences》2000,2(4):421-447
Plants are masters of transforming sunlight into chemical energy. In the ingenious antenna system of the leaf, the energy of the sunlight is transported by chlorophyll molecules for the purpose of energy transformation. We have succeeded in reproducing a similar light transport in an artificial system on a nano scale. In this artificial system, zeolite L cylinders adopt the antenna function. The light transport is made possible by specifically organized dye molecules, which mimic the natural function of chlorophyll. Zeolites are crystalline materials with different cavity structures. Some of them occur in nature as a component of the soil. We are using zeolite L crystals of cylindrical morphology which consist of a continuous one-dimensional tube system and we have succeeded in filling each individual tube with chains of joined but noninteracting dye molecules. Light shining on the cylinder is first absorbed and the energy is then transported by the dye molecules inside the tubes to the cylinder ends. We expect that our system can contribute to a better understanding of the important light harvesting process which plants use for the photochemical transformation and storage of solar energy. We have synthesized nanocrystalline zeolite L cylinders ranging in length from 300 to 3000 nm. A cylinder of 800 nm diameter, e.g. consists of about 150 000 parallel tubes. Single red emitting dye molecules (oxonine) were put at each end of the tubes filled with a green emitting dye (pyronine). This arrangement made the experimental proof of efficient light transport possible. Light of appropriate wavelength shining on the cylinder is only absorbed by the pyronine and the energy moves along these molecules until it reaches the oxonine. The oxonine absorbs the energy by a radiationless energy transfer process, but it is not able to send it back to the pyronine. Instead it emits the energy in the form of red light. The artificial light harvesting system makes it possible to realize a device in which different dye molecules inside the tubes are arranged in such a way that the whole visible spectrum can be used by conducting light from blue to green to red without significant loss. Such a material could conceivably be used in a dye laser of extremely small size. The light harvesting nanocrystals are also investigated as probes in near-field microscopy, as materials for new imaging techniques and as luminescent probes in biological systems. The extremely fast energy migration, the pronounced anisotropy, the geometrical constraints and the high concentration of monomers which can be realized, have great potential in leading to new photophysical phenomena. Attempts are being made to use the efficient zeolite-based light harvesting system for the development of a new type of thin-layer solar cell in which the absorption of light and the creation of an electron-hole pair are spatially separated as in the natural antenna system of green plants. Synthesis, characterization and applications of an artificial antenna for light harvesting within a certain volume and transport of the electronic excitation energy to a specific place of molecular dimension has been the target of research in many laboratories in which different approaches have been followed. To our knowledge, the system developed by us is the first artificial antenna which works well enough to deserve this name. Many other highly organized dye–zeolite materials of this type can be prepared by similar methods and are expected to show a wide variety of remarkable properties. The largely improved chemical and photochemical stability of dye molecules inserted in an appropriate zeolite framework allows us to work with dyes which otherwise would be considered uninteresting because of their lack of stability. We have developed two methods for preparing well-defined dye–zeolite materials, one of them working at the solid–liquid and the other at the solid–gas interface. Different approaches for preparing similar materials are in situ synthesis (ship in a bottle) or different types of crystallization inclusion synthesis.  相似文献   

3.
Relatively large amounts of radioactive iodine 129I (T 1/2  = 15.7 Ma) have been documented in seawater such as the English Channel, the Irish Sea and the North Sea. Data on the concentration of the iodine isotopes in waters of the Celtic Sea are missing. Aiming to provide first 129I data in the Celtic Sea and compare them with levels in the other close-by seawater bodies, surface seawater samples were analyzed for the determination of 127I and 129I concentrations. The results revealed a high level of 129I in these waters and suggest strong influence by liquid discharges from La Hague and Sellafield reprocessing facilities. 127I concentrations are rather constant while the 129I/127I ratio reaches up to 2.8 × 10?8 (ranging from 10?10 to 10?8), which is 2–4 orders of magnitude higher than pre-nuclear era natural level. Transport of 129I to the Celtic Sea is difficult to depict accurately since available data are sparse. Most likely, however, that discharges originated from La Hague may have more influence on the Celtic Sea 129I concentrations than the Sellafield. Comprehensive surface water and depth profiles 129I data will be needed in the future for assessment of environmental impact in the region.  相似文献   

4.
Lateral force microscopy (LFM) was used to probe the molecular motions at thin polystyrene film surface. The effect of the applied load on the LFM measurements was investigated by presenting both the LFM results and the surface morphology after several scans over the same area. Depending on the loads, the scanning can be nonperturbative (without alternating the surface morphology) or perturbative (patterning the surface). Temperature-dependent LFM measurements were conducted in order to determine the apparent transitions at the surface. Perturbative scans under high loads (e.g., 150 nN) witnessed that the apparent transitions shifted to low temperatures with an increasing scan rate, while the transitions behaved oppositely under lower loads (1, 10, and 20 nN). The heating effect is suggested to account for the behavior under high loads. According to our results from nonperturbative LFM, the apparent glass transition temperature (T(g)s) is more than 10 K lower than the bulk value. Moreover, rate-dependent LFM measurements were performed under 1 nN in order to detect the surface molecular motions. Time-temperature superposition yields a master curve exhibiting three apparent relaxation peaks. The molecular motions at the surface are discussed on the context of the coupling model.  相似文献   

5.
6.
Silica gel with extremely small pores of 3 nm diameter was filled with liquid cetane. Samples with various coefficients of filling k of cetane were prepared. After the solidification of confined cetane, its free volume has been investigated. The positron annihilation lifetime spectroscopy at 24–300 K and differential scanning calorimetry (DSC) at 233–303 K measurements have been performed. Decreasing the temperature, only small changes in dimensions of silica gel matrix and pronounced contraction of confined cetane have been indicated. In the case of k < 0.2, however, via cooling below 180 K, the temperature dependence changes its sign and the free volume in confined cetane increases. Decreasing the cetane content, the negative apparent expansion coefficient dramatically grows. This anomalous temperature dependence is interpreted by the cracking of thin layer of solid cetane which is in contact with the walls of silica gel pores.  相似文献   

7.
8.
Describing wetting of a liquid on a rough or structured surface is a challenge because of the wide range of involved length scales. Nano- and micrometer-sized textures cause pinning of the contact line, reflected in a hysteresis of the contact angle. To investigate contact angles at different length scales, we imaged water drops on arrays of 5 μm high poly(dimethylsiloxane) micropillars. The drops were imaged by laser scanning confocal microscopy (LSCM), which allowed us to quantitatively analyze the local and large-scale drop profile simultaneously. Deviations of the shape of drops from a sphere decay at two different length scales. Close to the pillars, the amplitude of deviations decays exponentially within 1-2 μm. The drop profile approached a sphere at a length scale 1 order of magnitude larger than the pillars' height. The height and position dependence of the contact angles can be understood from the interplay of pinning of the contact line, the principal curvatures set by the topography of the substrate, and the minimization of the air-water interfaces.  相似文献   

9.
Bilayer lipid membranes (BLM) are commonly used as models for cell membranes to study their interactions with inorganic ions and molecules of biological importance. In this work the principal electrostatic effects at the BLM surface are demonstrated by two methods: by the inner membrane field compensation (IFC) which is applied to planar BLM and sensitive to changes in the total boundary potential; and by electrokinetic measurements in liposome suspensions, sensitive to diffuse (surface) component of this potential. The difference in these two potentials allows us to conclude on changes in the dipole component of the boundary potential caused by structural changes at the membrane–water interface. No difference in the experimental data of both methods was observed for Be2+ and other divalent cation adsorption to unchanged phosphatidyl choline (PC) membranes. These data are in a good agreement with the Gouy–Champan–Stern (GCS) theory of diffuse double layer. This theory gives the value of binding constants for Be2+ about 400 M−1 and 104 M−1 for DPPC liposomes in the liquid and solid states of the lipids, respectively. Clear isotope effects for normal and heavy water solutions of Be2+ were observed both by the electrostatic measurements and by differential scanning calorimetry. In contrast to PC, the electrostatic potentials induced by Be2+ and Gd3+ adsorption to membranes from phosphatidyiserine (PS) show the difference between the data of mentioned methods — total boundary potential changes are much higher in comparison to the surface potential. Dipole potential changes (about 150 mV) caused by changes in PS head group orientation may be more important in this specific case.  相似文献   

10.
We study the dynamics of surfactant micelles at the solid-liquid interface using a new atomic force-microscopic imaging mode to visualize the nanometer-level structural features of the micelles and the picometer-level lattice of the substrate simultaneously. We find that defects created in a crystalline micellar array by the scanning probe tip self-heal flawlessly in less than 6 ms.  相似文献   

11.
Wastes containing radioactive materials have been produced ever since ore recovery and processing began; however, such materials did not become of public concern until the large-scale activities involving uranium and thorium ores and nuclear fission during and after World War II. Efforts to provide disposal sites for radioactive wastes, especially those associated with nuclear weapons and nuclear energy, have been largely unsuccessful for the past 40 years or so and are nearing crisis proportions as the new millennium begins — its eventual resolution is believed to require greater reliance on stewardship and a larger governmental presence.  相似文献   

12.
Streaming potential is created when an electrolyte solution is forced to flow pass a charged surface. For an uncoated fused silica capillary, the streaming potential is measured between the inlet and outlet vials while applying a pressure across the capillary. The changes in streaming potential can be used to characterize the properties of the capillary inner surface. In this work, HCl, NaCl, and NaOH solutions ranging from 0.4 to 6 mM were used as the background electrolyte (BGE) at temperatures of 15 to 35 °C for the mesurements. The streaming potential decreases with the increase in BGE concentration, and the trend is amplified at higher temperatures. When buffer solutions in the pH range of 1.5 to 12.7 were used as the BGE, streaming potential was shown to be sensitive to changes in pH but reaches a maximum at around 9.5. At pH < 3.3, no streaming potentials were observed. The pH of zero surface charge (streaming potential equals 0) changes with temperature, and is measured to be 3.3 to 3.1 when the temperature is changed from 15 to 35°C. Zeta potentials can be calculated from the measured streaming potential, conductivity, and the solution viscosity. Surface charge densities were calculated in this work using the zeta potentials obtained. We demonstrated that capillary surface conditions can significantly change the streaming potential, and with three different solutions, we showed that analyte-dependent adsorption can be monitored and mitigated to improve the peak symmetry and migration times reproducibility.  相似文献   

13.
Photolysis of p-tolyldiazirine (6) in the inner phase of a hemicarcerand with four butane-1,4-dioxy linker groups (5) in C(6)D(5)CD(3) at 77 K yields the 5-methylcycloheptatetraene hemicarceplex 5 circle 3b in 41% together with innermolecular reaction products resulting from an insertion of transient p-tolylcarbene (1b) into an acetal C-H or linker C-O bond of 5 and from the addition of 1b to an aryl unit of 5. The yield of incarcerated 3b increased up to 67% if 6 is photolyzed inside a hemicarcerand with deuterated spanners and butane-1,4-dioxy linker groups (d(48)-5). Hemicarceplex 5 circle 3b is not formed if the photolysis is carried out in CDCl(3). Incarcerated 3b is stable at room temperature in the absence of oxygen and is characterized by 1D and 2D NMR spectroscopy. In the presence of oxygen, 3b reacts quantitatively to yield toluene and CO(2). Upon heating solutions of d(48)-5 circle 3b in C(6)D(5)CD(3), 3b rearranges to 1b and m-tolylcarbene (18). Both tolylcarbenes immediately react with the surrounding host. From a product analysis and the measured rate constants for the thermal decomposition of d(48)-5 circle 3b in the temperature range 70-102 degrees C, the activation parameters for the 3b to 1b and 3b to 18 rearrangements are calculated (3b to 1b: DeltaG(373)++ = 27.3 +/- 1.4 kcal/mol, DeltaH(373)++ = 26.4 +/- 1.0 kcal/mol, TDeltaS(373)++ = -0.9 +/- 1.0 kcal/mol; 3b to 18: DeltaG(373)++ = 27.8 +/- 1.4 kcal/mol, DeltaH(373)++ = 19.7 +/- 1.0 kcal/mol, TDeltaS(373)++ = 8.1 +/- 1.0 kcal/mol). These values are compared with those calculated by Geise and Hadad at the B3LYP/6-311+G** level of theory (Geise, C. M.; Hadad, C. M. J. Org. Chem. 2002, 67, 2532-2540). The slightly higher inner phase activation free energy of the 3b to 18 rearrangement is explained through steric constraints imposed by the surrounding hemicarcerand on the transition state. The enthalpy-entropy compensation observed for the 3b to 18 rearrangement is discussed and interpreted as a result of a hemicarcerand and solvent reorganization along the reaction coordinate. It is taken as indirect evidence for the intermediacy of 2-methylbicyclo[4.1.0]hepta-2,4,6-triene in the 3b to 18 rearrangement.  相似文献   

14.
The oxidation behaviour of the oxide-dispersion strengthened (ODS) high-temperature alloys MA 956 (an aluminium oxide former) and MA 754 (a chromium oxide former) has been compared with that of two model alloys, Fe-20Cr-5Al and Ni-25Cr. The morphology and composition of the oxide scales were investigated by metallography, X-ray diffraction analysis and scanning electron microscopy. For analysis of the oxide layer growth mechanisms, twostage oxidation experiments with18O as tracer were used, the distribution of the oxygen isotopes in the oxide scale being determined by SIMS. The ODS alloys show a more selective oxidation than the two model alloys; moreover, the protective oxides on the ODS alloys have a lower growth rate and better adhesion than those on the two model alloys. From the SIMS investigations it can be deduced that the improved properties of the layers on the ODS alloys result from a change in the transport processes in the protective layer; whereas the aluminium and chromium oxide films on the conventional alloys grow by cation and anion transport, the scales on the ODS alloys grow almost exclusively by anion transport. It is shown that the observed properties of the oxide scales on the ODS alloys can be explained by this change in transport mechanism.Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

15.
Contact angle data for sets of probe liquids allow the determination of components of solid surface energies which in turn can be used to calculate the work of adhesion of other materials to the solid surface. There is much debate currently about the correct choice of the acid–base components for the probe liquids. For many systems, the strength of adhesion measured independently correlates well with the calculated work of adhesion. Recent trends in this area include adhesion under water and the adhesion of bacterial and other cells to immersed solids.  相似文献   

16.
Different ways of calculating surface energy components for substrates used in offset printing are compared. The results of the very useful van Oss-Chaudhury-Good bi-bidentate model (vOCG) are simplified to mono-bidentate and mono-monodentate models. The unbalance in the acid-base values often obtained by the vOCG model is strongly reduced when applying the simple mono-monodentate model. Moreover, the frequently encountered problem of negative square roots of the acid and base components is removed. An attempt to describe the ink transfer during offset printing by calculating theoretical works of adhesion between ink/plate and ink/paper is also made. The effect of paper roughness on the wetting was studied with atomic force microscopy (AFM).  相似文献   

17.
The modulation of the properties of lipid membranes by polyhydroxylated cosolutes such as sugars is a phenomenon of considerable biological, technological and medicinal relevance. A few years ago, we proposed the sugar-like mechanism--binding driven by the release of water molecules--as an attempt to rationalize the preferential affinity of carbohydrate molecules compared to water molecules for the surface of lipid bilayers, which is presumably related to the bioprotective action of these compounds. The goal herein is to gain a better understanding of the driving force underlying this mechanism, in terms of specific interactions or effects, as well as in terms of the energy-entropy partitioning. This is done in the simplest possible context of an apolar rigid-wall model representing the membrane, and mixtures of closely related and possibly artificial species in solution, namely monomers or dimers of Lennard-Jones particles, water with physical or reduced charges, and hydroxymethyl groups. The results indicate that although the sugar-like mechanism seems phenomenologically reasonable, the main driving force underlying this mechanism is not the entropy gain upon releasing water molecules into the bulk, as originally suggested, but rather the hydrophobic effect. Note that the latter effect is a generic concept and may in principle involve both a solvent release and an interaction component, depending on the solute considered.  相似文献   

18.
Synthesis of a photocatalyst with a novel particle form, its photoactivity, and the degradation of polyvinyl alcohol containing the photocatalyst were studied in detail. A microtube photocatalyst with titanium dioxide particles supported on the inner surface of the microtube was synthesized by adding fine titanium dioxide particles in the formation process of basic magnesium carbonate microtube. The photoactivity of the microtube photocatalyst was confirmed from the decomposition of 2-propanol under blacklight irradiation. Moreover, the microtube photocatalyst was found to cause no degradation of polyvinyl alcohol, whereas, it decomposed 2-propanol with its photoactivity when impregnated in a polyvinyl alcohol foam. This fact was considered to be derived from the unique structure of the microtube photocatalyst, which has a photoactive inner surface with titanium dioxide and an inert outer surface of basic magnesium carbonate.  相似文献   

19.
A range of surfaces coated with spherical silica particles, covering the size range from nanometer to micrometer, have been produced using Langmuir-Blodgett (LB) deposition. The particles were characterized both in suspension and in the Langmuir trough to optimize the surface preparation procedure. By limiting the particle aggregation and surface layer failures during the preparation steps, well-defined monolayers with a close-packed structure have been obtained for all particle sizes. Thus, this procedure led to structured surfaces with a characteristic variation in the amplitude and spatial roughness parameters. In order to obtain robust surfaces, a sintering protocol and an AFM-based wear test to determine the stability of the deposited surface layer were employed. Hydrophobization of the LB films followed by water contact angle measurements showed, for all tested particle sizes, the same increase in contact angle compared to the contact angle of a flat hydrophobic surface. This indicates nearly hexagonal packing and gives evidence for nearly complete surface wetting of the surface features.  相似文献   

20.
We have investigated cyclization of a Rouse chain at long and short times by a Langevin dynamics simulation method. We measure St, the fraction of nonreacted chains, for polymerizations ranging from Z=5 to Z=800 and capture distances ranging from a=0.1b to a=8b where b is the bond length. Comparison is made with two theoretical approaches. The first is a decoupling approximation used by Wilemski and Fixman to close the relevant master equation [J. Chem. Phys. 58, 4009 (1973); 60, 866 (1974)]. The second approach is the renormalization group arguments of Friedman and O'Shaughnessy [Phys. Rev. Lett 60, 64 (1988); J. Phys. II 1, 471 (1991)]. We find that at long times St decays as a single exponential with rate k(infinity). The scaled decay rate K=k(infinity)tauR appears to approach a constant value independent of the capture distance for very large chains consistent with the predictions of both the renormalization group (RG) and Wilemski-Fixman closure approximation. We extract K*, the long chain limit of K, from the fixed point a=a* where K is independent of Z. K* is larger than both the RG and closure predictions but much closer to the RG result. More convincing evidence for the RG analysis is obtained by comparing the short-time decay of St to long-time results. The RG analysis predicts that dSdt should decay as a power law at early times and that the exponent in the power law is related to K by a simple expression with no free parameters. Our simulations find remarkable agreement with this parameter-free prediction even for relatively short chains. We discuss possible experimental consequences of our result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号