首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we use the penalty approach for constrained minimization problems in infinite dimensional Banach spaces. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. We establish a simple sufficient condition for exact penalty property for two large classes of constrained minimization problems.  相似文献   

2.
We use the penalty approach in order to study inequality-constrained minimization problems in infinite dimensional spaces. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we consider a large class of inequality-constrained minimization problems for which a constraint is a mapping with values in a normed ordered space. For this class of problems we introduce a new type of penalty functions, establish the exact penalty property and obtain an estimation of the exact penalty. Using this exact penalty property we obtain necessary and sufficient optimality conditions for the constrained minimization problems.  相似文献   

3.
In this paper we use the penalty approach in order to study constrained minimization problems in a complete metric space with locally Lipschitzian mixed constraints. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we establish sufficient conditions for the exact penalty property.   相似文献   

4.
Alexander J. Zaslavski 《PAMM》2007,7(1):2060025-2060026
In this paper we use the penalty approach in order to study constrained minimization problems. A penalty function is said to have the exact penalty property if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. We discuss very simple sufficient conditions for the exact penalty property. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper we use the penalty approach in order to study constrained minimization problems in a Banach space with nonsmooth nonconvex mixed constraints. A penalty function is said to have the exact penalty property [J.-B. Hiriart-Urruty, C. Lemarechal, Convex Analysis and Minimization Algorithms, Springer, Berlin, 1993] if there is a penalty coefficient for which a solution of an unconstrained penalized problem is a solution of the corresponding constrained problem. In this paper we establish sufficient conditions for the exact penalty property.  相似文献   

6.
In this paper, we use the penalty approach in order to study a class of constrained vector minimization problems on complete metric spaces. A penalty function is said to have the generalized exact penalty property iff there is a penalty coefficient for which approximate solutions of the unconstrained penalized problem are close enough to approximate solutions of the corresponding constrained problem. For our class of problems, we establish the generalized exact penalty property and obtain an estimation of the exact penalty.  相似文献   

7.
In this paper we use the penalty approach in order to study a class of constrained minimization problems on complete metric spaces. A penalty function is said to have the generalized exact penalty property if there is a penalty coefficient for which approximate solutions of the unconstrained penalized problem are close enough to approximate solutions of the corresponding constrained problem. For our class of problems we establish the generalized exact penalty property and obtain an estimation of the exact penalty.  相似文献   

8.
In this paper we use the penalty approach in order to study two constrained minimization problems. A penalty function is said to have the generalized exact penalty property if there is a penalty coefficient for which approximate solutions of the unconstrained penalized problem are close enough to approximate solutions of the corresponding constrained problem. In this paper we show that the generalized exact penalty property is stable under perturbations of cost functions, constraint functions and the right-hand side of constraints.  相似文献   

9.
The exact penalty approach aims at replacing a constrained optimization problem by an equivalent unconstrained optimization problem. Most results in the literature of exact penalization are mainly concerned with finding conditions under which a solution of the constrained optimization problem is a solution of an unconstrained penalized optimization problem, and the reverse property is rarely studied. In this paper, we study the reverse property. We give the conditions under which the original constrained (single and/or multiobjective) optimization problem and the unconstrained exact penalized problem are exactly equivalent. The main conditions to ensure the exact penalty principle for optimization problems include the global and local error bound conditions. By using variational analysis, these conditions may be characterized by using generalized differentiation.  相似文献   

10.
针对等式及不等式约束极小化问题,通过对原问题添加一个变量,给出一个新的简单精确罚函数,即在该精确罚函数表达式中,不含有目标函数及约束函数的梯度.在满足某些约束品性的条件下,可以证明:当罚参数充分大时,所给出的罚问题的局部极小点是原问题的局部极小点.  相似文献   

11.
In this paper a new continuously differentiable exact penalty function is introduced for the solution of nonlinear programming problems with compact feasible set. A distinguishing feature of the penalty function is that it is defined on a suitable bounded open set containing the feasible region and that it goes to infinity on the boundary of this set. This allows the construction of an implementable unconstrained minimization algorithm, whose global convergence towards Kuhn-Tucker points of the constrained problem can be established.  相似文献   

12.
We give an approach for finding a global minimization with equality and inequality Constraints.Our approach is to construct an exact penalty function, and prove that the global minimal points of this exact penalty function are the primal constrained global minimal points. Thus we convert the problem of global constrained optimization into a problem of global unconstrained optimization. Furthermore, the integral approach for finding a global minimization for a class of discontinuous functions is used and an implementable algorithm is given.  相似文献   

13.
On the exactness of a class of nondifferentiable penalty functions   总被引:1,自引:0,他引:1  
In this paper, we consider a class of nondifferentiable penalty functions for the solution of nonlinear programming problems without convexity assumptions. Preliminarily, we introduce a notion of exactness which appears to be of relevance in connection with the solution of the constrained problem by means of unconstrained minimization methods. Then, we show that the class of penalty functions considered is exact, according to this notion. This research was partially supported by the National Research Program on “Modelli e Algoritmi per l'Ottimizzazione,” Ministero della Pubblica, Istruzione, Roma, Italy.  相似文献   

14.
The aim of this paper is to show that the new continuously differentiable exact penalty functions recently proposed in literature can play an important role in the field of constrained global optimization. In fact they allow us to transfer ideas and results proposed in unconstrained global optimization to the constrained case.First, by drawing our inspiration from the unconstrained case and by using the strong exactness properties of a particular continuously differentiable penalty function, we propose a sufficient condition for a local constrained minimum point to be global.Then we show that every constrained local minimum point satisfying the second order sufficient conditions is an attraction point for a particular implementable minimization algorithm based on the considered penalty function. This result can be used to define new classes of global algorithms for the solution of general constrained global minimization problems. As an example, in this paper we describe a simulated annealing algorithm which produces a sequence of points converging in probability to a global minimum of the original constrained problem.  相似文献   

15.
《Optimization》2012,61(3-4):239-259
In this paper we propose a new class of continuously differentiable globally exact penalty functions for the solution of minimization problems with simple bounds on some (all) of the variables. The penalty functions in this class fully exploit the structure of the problem and are easily computable. Furthermore we introduce a simple updating rule for the penalty parameter that can be used in conjunction with unconstrained minimization techniques to solve the original problem.  相似文献   

16.
Penalty function is an important tool in solving many constrained optimization problems in areas such as industrial design and management. In this paper, we study exactness and algorithm of an objective penalty function for inequality constrained optimization. In terms of exactness, this objective penalty function is at least as good as traditional exact penalty functions. Especially, in the case of a global solution, the exactness of the proposed objective penalty function shows a significant advantage. The sufficient and necessary stability condition used to determine whether the objective penalty function is exact for a global solution is proved. Based on the objective penalty function, an algorithm is developed for finding a global solution to an inequality constrained optimization problem and its global convergence is also proved under some conditions. Furthermore, the sufficient and necessary calmness condition on the exactness of the objective penalty function is proved for a local solution. An algorithm is presented in the paper in finding a local solution, with its convergence proved under some conditions. Finally, numerical experiments show that a satisfactory approximate optimal solution can be obtained by the proposed algorithm.  相似文献   

17.
本文把战斗对策归结为有约束极小极大问题,讨论解的存在性.引进不连续罚函数后,把有约束问题化为无约束极小极大问题.  相似文献   

18.
本文把战斗对策归结为有约束极小极大问题,讨论解的存在性.引进不连续罚函数后,把有约束问题化为无约束极小极大问题。  相似文献   

19.
In the paper, the classical exact absolute value function method is used for solving a nondifferentiable constrained interval-valued optimization problem with both inequality and equality constraints. The property of exactness of the penalization for the exact absolute value penalty function method is analyzed under assumption that the functions constituting the considered nondifferentiable constrained optimization problem with the interval-valued objective function are convex. The conditions guaranteeing the equivalence of the sets of LU-optimal solutions for the original constrained interval-valued extremum problem and for its associated penalized optimization problem with the interval-valued exact absolute value penalty function are given.  相似文献   

20.
M. V. Dolgopolik 《Optimization》2017,66(10):1577-1622
In this article, we develop a general theory of exact parametric penalty functions for constrained optimization problems. The main advantage of the method of parametric penalty functions is the fact that a parametric penalty function can be both smooth and exact unlike the standard (i.e. non-parametric) exact penalty functions that are always nonsmooth. We obtain several necessary and/or sufficient conditions for the exactness of parametric penalty functions, and for the zero duality gap property to hold true for these functions. We also prove some convergence results for the method of parametric penalty functions, and derive necessary and sufficient conditions for a parametric penalty function to not have any stationary points outside the set of feasible points of the constrained optimization problem under consideration. In the second part of the paper, we apply the general theory of exact parametric penalty functions to a class of parametric penalty functions introduced by Huyer and Neumaier, and to smoothing approximations of nonsmooth exact penalty functions. The general approach adopted in this article allowed us to unify and significantly sharpen many existing results on parametric penalty functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号