首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of three different types of mass spectrometers (MS) coupled to high performance liquid chromatography (HPLC) was compared for trace analysis of perfluoroalkylated substances (PFAS) and fluorotelomer alcohols (FTOHs). Ion trap MS in the full scan and product ion MS2 mode, time-of-flight (TOF) high resolution MS and quadrupole MS in the selected ion mode as well as triple quadrupole tandem MS were tested. Electrospray ionisation in the negative ion mode [ESI-] was best suited for all instruments and compounds. PFAS could only be separated by a buffered mobile phase, but the presence of buffer suppressed the ionisation of FTOHs. Therefore, two independent chromatographic methods were developed for the two compound classes. Mass spectra and product ion spectra obtained by in-source and collision induced dissociation fragmentation are discussed including ion adduct formation. Product ion yields of PFAS were only in the range of 0.3 to 12%, independent from the applied MS instrument. Ion trap MS2 gave product ion yields of 20 to 62% for FTOHs, whereas only 4.1 to 5.8% were obtained by triple quadrupole tandem MS. Ion trap MS was best suited for qualitative analysis and structure elucidation of branched isomeric structures of PFAS. Providing typical detection limits of 5 ng injected in MS2 mode, it was not sensitive enough for selective trace amount quantification. TOF high resolution MS was the only technique combining high selectivity and excellent sensitivity for PFAS analysis (detection limits of 2 to 10 pg), but lacked the possibility of MS-MS. Triple quadrupole tandem MS was the method of choice for quantification of FTOHs with detection limits in the low pg range. It is also well suited for the determination of PFAS, though its detection limits of 10 to 100 pg in tandem MS mode are about one order of magnitude higher than for TOF MS.  相似文献   

2.
A new hybrid electrospray quadrupole Fourier transform mass spectrometry (FTMS) instrument design is shown and characterized. This instrument involves coupling an electrospray source and mass-resolving quadrupole, ion accumulation, and collision cell linear ion trap system developed by MDS Sciex with a home-built ion guide and ion cyclotron resonance (ICR) cell. The iterative progression of this design is shown. The final design involves a set of hexapole ion guides to transfer the ions from the accumulation/collision trap through the magnetic field gradient and into the cell. These hexapole ion guides are separated by a thin gate valve and two conduction limits to maintain the required <10(-9) mbar vacuum for FTICR. Low-attomole detection limits for a pure peptide are shown, 220 000 resolving power in broadband mode and 820 000 resolving power in narrow-band mode are demonstrated, and mass accuracy in the <2 ppm range is routinely available provided the signal is abundant, cleanly resolved, and internally calibrated. This instrument design provides high experimental flexibility, allowing Q2 CAD, SORI-CAD, IRMPD, and ECD experiments with selected ion accumulation as well as experiments such as nozzle skimmer dissociation. Initial top-down mass spectrometry experiments on a protein is shown using ECD.  相似文献   

3.
Our goal was to compare two popular analytical techniques used nowadays in proteomic investigations for proteins/peptides sequencing and identification, a widely used nanoLC‐MS/MS approach applied in the bottom‐up proteomics and electron transfer dissociation/proton transfer reaction fragmentation preferably used when top‐down strategy is applied. Comparison was carried out with the aid of the ESI‐quadrupole ion‐trap instrument using the following criteria: total time of analysis including sample preparation, sequence coverage, Mascot scoring, capability to detect modifications, quality of the results as a function of protein molecular weight and sample consumption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Ion excitation in a linear quadrupole ion trap with an added octopole field   总被引:2,自引:0,他引:2  
Modeling of ion motion and experimental investigations of ion excitation in a linear quadrupole trap with a 4% added octopole field are described. The results are compared with those obtained with a conventional round rod set. Motion in the effective potential of the rod set can explain many of the observed phenomena. The frequencies of ion oscillation in the x and y directions shift with amplitude in opposite directions as the amplitudes of oscillation increase. Excitation profiles for ion fragmentation become asymmetric and in some cases show bistable behavior where the amplitude of oscillation suddenly jumps between high and low values with very small changes in excitation frequency. Experiments show these effects. Ions are injected into a linear trap, stored, isolated, excited for MS/MS, and then mass analyzed in a time-of-flight mass analyzer. Frequency shifts between the x and y motions are observed, and in some cases asymmetric excitation profiles and bistable behavior are observed. Higher MS/MS efficiencies are expected when an octopole field is added. MS/MS efficiencies (N(2) collision gas) have been measured for a conventional quadrupole rod set and a linear ion trap with a 4% added octopole field. Efficiencies are chemical compound dependent, but when an octopole field is added, efficiencies can be substantially higher than with a conventional rod set, particularly at pressures of 1.4 x 10(-4) torr or less.  相似文献   

5.
Triple quadrupole mass spectrometers are generally considered the instrument of choice for quantitative analysis. However, for the analysis of large peptides we have encountered some cases where, as the data presented here would indicate, ion trap mass spectrometers may be a good alternative. In general, specificity and sensitivity in bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays are achieved via tandem MS (MS/MS) utilizing collision-induced dissociation (CID) while monitoring unique precursor to product ion transitions (i.e. selected reaction monitoring, SRM). Due to the difference in CID processes, triple quadrupoles and ion traps often generate significantly different fragmentation spectra of product ion species and intensities. The large peptidic analytes investigated here generated fewer fragments with higher relative abundance on the ion trap as compared to those generated on the triple quadrupole, resulting in lower limits of detection on the ion trap.  相似文献   

6.
The presence of arginine as the naturally occurring amino acid with the highest gas-phase basicity strongly influences the fragmentation behavior of peptides undergoing collision-induced dissociation. Using a derivatization procedure recently developed in our group, based on a reversible reaction of the guanidino group with 2,3-butanedione and an arylboronic acid, we examined how this label affects the fragmentation patterns of labeled versus unlabeled peptides in MS/MS experiments. As part of this fundamental study, two groups of model peptides (angiotensins and bradykinins) as well as tryptic peptides were labeled according to our protocol and subjected to collision-induced dissociation (CID) in both a triple quadrupole and a quadrupole ion trap instrument. It was found that for angiotensins containing an AspArg sequence, C-terminal cleavage at Asp that occurs for native peptides was completely inhibited in Arg-labeled peptides. For bradykinins and peptides obtained from tryptic digests of standard proteins, some sample peptides were little affected by the tagging of arginine residues. Others, in contrast, exhibited an almost total loss of nonspecific backbone cleavage and their fragment ion spectra were dominated by loss of the arginine tag. These and other experimental results are discussed in view of the nature of the arginine tag and the concept of proton mobility.  相似文献   

7.
Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) was utilized to evaluate an ion collision energy ramping technique that simultaneously fragments a variety of species. To evaluate this technique, the fragmentation patterns of a mixture of ions ranging in mass, charge state, and drift time were analyzed to determine their optimal fragmentation conditions. The precursor ions were pulsed into the IMS-MS instrument and separated in the IMS drift cell based on mobility differences. Two differentially pumped short quadrupoles were used to focus the ions exiting the drift cell, and fragmentation was induced by collision induced dissociation (CID) between the conductance limiting orifice behind the second short quadrupole and before the first octopole in the mass spectrometer. To explore the fragmentation spectrum of each precursor ion, the bias voltages for the short quadrupoles and conductance limiting orifices were increased from 0 to 50 V above nonfragmentation voltage settings. An approximately linear correlation was observed between the optimal fragmentation voltage for each ion and its specific drift time, so a linear voltage gradient was employed to supply less collision energy to high mobility ions (e.g., small conformations or higher charge state ions) and more to low mobility ions. Fragmentation efficiencies were found to be similar for different ions when the fragmentation voltage was linearly ramped with drift time, but varied drastically when only a single voltage was used.  相似文献   

8.
The use of a new hybrid quadrupole/linear ion trap known as the Q TRAP offers unique benefits as a LC-MS-MS detector for both small and large molecule analyses. The instrument combines the capabilities of a triple quadrupole mass spectrometer and ion trap technology on a single platform. Product ion scans are conducted in a hybrid fashion with the fragmentation step accomplished via acceleration into the collision cell followed by trapping and mass analysis in the Q3 linear ion trap. This results in triple quadrupole fragmentation patterns with no inherent low molecular mass cutoff. In-trap fragmentation is also possible in order to provide triple MS (MS3) capabilities. There are also several scan modes that are not possible on conventional instruments that enable identification of analytes within complex biological matrixes for subsequent high sensitivity product ion scans. This report will describe the new hybrid instrument and the principles of operation, and also provide examples of the unique scan modes and capabilities of the Q TRAP for LC-MS-MS detection in metabolism identification.  相似文献   

9.
An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap.  相似文献   

10.
The use of a new electrospray qQq Fourier transform ion cyclotron mass spectrometer (qQq-FTICR MS) instrument for biologic applications is described. This qQq-FTICR mass spectrometer was designed for the study of post-translationally modified proteins and for top-down analysis of biologically relevant protein samples. The utility of the instrument for the analysis of phosphorylation, a common and important post-translational modification, was investigated. Phosphorylation was chosen as an example because it is ubiquitous and challenging to analyze. In addition, the use of the instrument for top-down sequencing of proteins was explored since this instrument offers particular advantages to this approach. Top-down sequencing was performed on different proteins, including commercially available proteins and biologically derived samples such as the human E2 ubiquitin conjugating enzyme, UbCH10. A good sequence tag was obtained for the human UbCH10, allowing the unambiguous identification of the protein. The instrument was built with a commercially produced front end: a focusing rf-only quadrupole (Q0), followed by a resolving quadrupole (Q1), and a LINAC quadrupole collision cell (Q2), in combination with an FTICR mass analyzer. It has utility in the analysis of samples found in substoichiometric concentrations, as ions can be isolated in the mass resolving Q1 and accumulated in Q2 before analysis in the ICR cell. The speed and efficacy of the Q2 cooling and fragmentation was demonstrated on an LCMS-compatible time scale, and detection limits for phosphopeptides in the 10 amol/muL range (pM) were demonstrated. The instrument was designed to make several fragmentation methods available, including nozzle-skimmer fragmentation, Q2 collisionally activated dissociation (Q2 CAD), multipole storage assisted dissociation (MSAD), electron capture dissociation (ECD), infrared multiphoton induced dissociation (IRMPD), and sustained off resonance irradiation (SORI) CAD, thus allowing a variety of MS(n) experiments. A particularly useful aspect of the system was the use of Q1 to isolate ions from complex mixtures with narrow windows of isolation less than 1 m/z. These features enable top-down protein analysis experiments as well structural characterization of minor components of complex mixtures.  相似文献   

11.
Hydrogen (1H/2H) exchange combined with mass spectrometry (HX-MS) has become a recognized method for the analysis of protein structural dynamics. Presently, the incorporated deuterons are typically localized by enzymatic cleavage of the labeled proteins and single residue resolution is normally only obtained for a few residues. Determination of site-specific deuterium levels by gas-phase fragmentation in tandem mass spectrometers would greatly increase the applicability of the HX-MS method. The biggest obstacle in achieving this goal is the intramolecular hydrogen migration (i.e., hydrogen scrambling) that occurs during vibrational excitation of gas-phase ions. Unlike traditional collisional ion activation, electron capture dissociation (ECD) is not associated with substantial vibrational excitation. We investigated the extent of intramolecular backbone amide hydrogen (1H/2H) migration upon ECD using peptides with a unique selective deuterium incorporation. Our results show that only limited amide hydrogen migration occurs upon ECD, provided that vibrational excitation prior to the electron capture event is minimized. Peptide ions that are excessively vibrationally excited in the electrospray ion source by, e.g., high declustering potentials or during precursor ion selection (via sideband excitation) in the external linear quadrupole ion trap undergo nearly complete hydrogen (1H/2H) scrambling. Similarly, collision-induced dissociation (CID) in the external linear quadrupole ion trap results in complete or extensive hydrogen (1H/2H) scrambling. This precludes the use of CID as a method to obtain site-specific information from proteins that are labeled in solution-phase 1H/2H exchange experiments. In contrast, the deuteration levels of the c- and z-fragment ions generated from ECD closely mimic the known solution deuteration pattern of the selectively labeled peptides. This excellent correlation between the results obtained from gas phase and solution suggests that ECD holds great promise as a general method to obtain single residue resolution in proteins from solution 1H/2H exchange experiments.  相似文献   

12.
Searchable libraries of MS/MS spectra, obtained using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with data-dependent scan mode switching on both quadrupole ion trap and triple-quadrupole mass spectrometers in conjunction with electrospray ionization, are presented. The effects on library search scores of changing the parameters for producing collision-induced dissociation (CID) on both instrument types are systematically evaluated. These observations serve as a basis for determining a universal set of conditions for building MS/MS libraries. A group of 19 closely related steroids was used. The ability to obtain library-searchable spectra at low concentrations is demonstrated for the analysis of a sample of progesterone spiked with hydroxyprogesterone impurities at 0.1 and 0.01%.  相似文献   

13.
Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins. Experiments were performed on a hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin, lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECD-MS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags, providing greater confidence in protein assignment.  相似文献   

14.
Gangliosides play important biological roles and structural characterization of both the carbohydrate and the lipid moieties is important. The FT-ICR MS/MS techniques of electron capture dissociation (ECD), electron detachment dissociation (EDD), and infrared multiphoton dissociation (IRMPD) provide extensive fragmentation of the protonated and deprotonated GM1 ganglioside. ECD provides extensive structural information, including identification of both halves of the ceramide and cleavage of the acetyl moiety of the N-acetylated sugars. IRMPD provides similar glycan fragmentation but no cleavage of the acetyl moiety. Cleavage between the fatty acid and the long-chain base of the ceramide moiety is seen in negative-ion IRMPD but not in positive-ion IRMPD of GM1. Furthermore, this extent of fragmentation requires a range of laser powers, whereas all information is available from a single ECD experiment. However, stepwise fragmentation by IRMPD may be used to map the relative labilities for a series of cleavages. EDD provides the alternative of electron-induced fragmentation for negative ions with extensive fragmentation, but suffers from low efficiency as well as complication of data analysis by frequent loss of hydrogen atoms. We also show that analysis of MS/MS data for glycolipids is greatly simplified by classification of product ion masses to specific regions of the ganglioside based solely on mass defect graphical analysis.  相似文献   

15.
Fragmentation mechanisms of trans-1,4-diphenyl-2-butene-1,4-dione were studied using a variety of mass spectrometric techniques. The major fragmentation pathways occur by various rearrangements by loss of H(2)O, CO, H(2)O and CO, and CO(2). The other fragmentation pathways via simple alpha cleavages were also observed but accounted for the minor dissociation channels in both a two-dimensional (2-D) linear ion trap and a quadrupole time-of-flight (Q-TOF) mass spectrometer. The elimination of CO(2) (rather than CH(3)CHO or C(3)H(8)), which was confirmed by an exact mass measurement using the Q-TOF instrument, represented a major fragmentation pathway in the 2-D linear ion trap mass spectrometer. However, the elimination of H(2)O and CO becomes more competitive in the beam-type Q-TOF instrument. The loss of CO is observed in both the MS(2) experiment of m/z 237 and the MS(3) experiment of m/z 219 but via the different transition states. The data suggest that the olefinic double bond in protonated trans-1,4-diphenyl-2-butene-1,4-dione plays a key role in stabilizing the rearrangement transition states and increasing the bond dissociation (cleavage) energy to give favorable rearrangement fragmentation pathways.  相似文献   

16.
The bisphosphonate family with a P-C-P structure is a broad class of drugs, widely investigated as potential inhibitors in bone diseases and calcium metabolic disorders. In this study, the mass spectrometric (MS) behavior and fragmentation of clodronate and related bisphosphonate and phosphonate compounds was studied by using negative ion electrospray ionization (ESI) with triple quadrupole and ion trap instruments. The effect of pH on the degree of deprotonation of the polyprotic bisphosphonic and phosphonic acids in negative ion ESI-MS was investigated, and the degree of deprotonation in the ESI mass spectra and the dissociation in the liquid phase were compared. The results provide evidence that the measured ESI mass spectra do not correlate with the chemistry in the liquid phase owing to the decrease in the pH of the solvent droplets during the ion evaporation process and the charge state neutralization in the gas phase. Ion trap MS(n) provided useful information on the fragmentation study of clodronate and related bisphosphonate and phosphonate compounds, in which interesting fragmentation pathways including the direct elimination of carbon monoxide from deprotonated bisphosphonates and formation of a P-P bond were observed. Reactions between the product ions with a -PO(2) group and residual water in the ion trap or in the high-pressure region of the triple quadrupole instrument formed other unexpected fragmentation paths for all the bisphosphonates studied.  相似文献   

17.
Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass‐selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A commercial matrix-assisted laser desorption/ionisation time-of-flight (MALDI-ToF) instrument equipped with a curved field reflectron (CFR) was modified in order to perform collision-induced dissociation (CID) on a variety of biomolecules. The incorporation of a high-resolution ion gate together with a collision cell within the field-free region allowed tandem mass analysis (MS/MS), without the necessity to decelerate the precursor ions prior to activation. The simultaneous detection of all product ions remained possible by using the CFR. To test the MS/MS performances, ACTH (fragment 1-17), a complex high mannose carbohydrate (Man)(8)(GlcNac)(2) and a lysophosphatidylcholine lipid (18:1) were analysed on the modified instrument. Direct comparison with the low-energy product ion spectra, acquired on a MALDI quadrupole ion trap (QIT) two-stage reflectron time-of flight (ReToF) mass spectrometer, showed significant differences in the types of product ions observed. The additional ions detected were a clear indication of the high-energy fragmentation processes occurring in the collision cell.  相似文献   

19.
The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.  相似文献   

20.
The fragmentation behaviour of seven pairs of isomeric flavone/isoflavone aglycones (solely hydroxylated and/or methoxylated) was studied using ion trap mass spectrometry with atmospheric pressure ionisation (API, both electrospray and APCI) in the positive and negative ion modes. A major difference was found in the neutral loss of 56 u, which was a common feature of all isoflavones in API(+). It was identified as a double loss of CO by accurate mass tandem mass spectrometric (MS/MS) measurements using a hybrid quadrupole time-of-flight (Q-TOF) instrument. Fragmentation of daidzein with (13)C-isotope labelling of the carbon C2 showed that this double loss occurred from the central ring of the molecule. A mechanism for this selective fragmentation is given. Further isoflavone-specific fragmentations were used to develop a guideline for the identification of isoflavone structures. A software-based neutral loss scan of 56 u in the API(+)-MS(2) mode was applied to extracts of leaves of Lupinus albus and to soy flour. The structure elucidation guideline allowed identification of hydroxy and/or methoxy isoflavones. Structures could be confirmed for those available as reference compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号