首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspects of transport in a highly multiple-scattering environment are investigated by examining random walkers moving in media having anisotropic angular scattering cross sections (turn-angle distributions). A general expression is obtained for the mean square displacement x2 of a random walker executing ann-step walk in an infinite homogeneous material, and results are used to predict scaling relations for the probability() that a walker returns to the planar surface of a semi-infinite medium at a distance from the point of its insertion.  相似文献   

2.
In this paper we revisit the problem of a (non-self-avoiding) polymer chain in a random medium which was previously investigated by Edwards and Muthukumar (EM) [J. Chem. Phys. 89, 2435 (1988)]. As noticed by Cates and Ball (CB) [J. Phys. (France) 49, 2009 (1988)] there is a discrepancy between the predictions of the replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results should coincide (for a chain that is free to move) and a long polymer should always collapse. CB argued that only in a finite volume one might see a "localization transition" (or crossover) from a stretched to a collapsed chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five variational parameters we derive analytically for d<4 the result R approximately (g|ln &mgr;|)(-1/(4-d)) approximately (g ln V)(-1/(4-d)), where R is the radius of gyration, g is the strength of the disorder, &mgr; is the spring constant associated with the confining potential, and V is the associated effective volume of the system. Thus the EM result is recovered with their constant replaced by ln V as argued by CB. We see that in the strict infinite volume limit the polymer always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as a function of the strength of the disorder. For d<2 and for large V>V' approximately exp(g(2/(2-d))L((4-d)/(2-d))) the annealed results are recovered and R approximately (Lg)(1/(d-2)), where L is the length of the polymer. Hence the polymer also collapses in the large L limit. The one-step replica symmetry breaking solution is crucial for obtaining the above results.  相似文献   

3.
E. Bringuier 《Physica A》2010,389(21):4545-1875
The motion of a linear polymer chain in a good solvent under a temperature gradient is examined theoretically by breaking up the flexible chain into Brownian rigid rods, and writing down an equation of motion for each rod. The motion is driven by two forces. The first one is Waldmann’s thermophoretic force (stemming from the departure of the solvent’s molecular-velocity distribution from Maxwell’s equilibrium distribution) which here is extrapolated to a dense medium. The second force is due to the fact that the viscous friction varies with position owing to the temperature gradient, which brings an important correction to the Stokes law of friction. We use scaling considerations relying upon disparate length scales and omitting non-universal numerical prefactors. The present scaling theory is compared with recent experiments on the thermodiffusion of polymers and is shown to account for (i) the existence of both signs of the thermodiffusion coefficient of long chains, (ii) the order of magnitude of the coefficient, (iii) its independence of the chain length in the high-polymer limit and (iv) its dependence on the solvent viscosity.  相似文献   

4.
This paper is concerned with Mandelbrot's stochastic cascade measures. The problems of (i) scaling exponents of structure functions of the measure, (q), and (ii) multifractal dimensions are considered for cascades with a generator vector (w 1...w c) of the general type. These problems were previously studied for independent strongly bounded variablesw i: 0<a ic. Consequently, a broad class of models used in applications, including Kolmogorov's long-normal model in turbulence, long-stable universal cascades in atmospheric dynamics, has not been covered. Roughly speaking, problems (i), (ii) are here solved under the condition that the scaling exists; the -function is calculated for all arguments (previously this was done for positiveq) and a new effect emerges: the -function can generally involve discontinuities in the first derivative as well as in the second.  相似文献   

5.
6.
Extensive Monte Carlo data analysis gives clear evidence that collapsed linear polymers in two dimensions fall in the universality class of athermal, dense self-avoiding walks, as conjectured by Duplantier [Phys. Rev. Lett. 71, 4274 (1993)].10.1103/PhysRevLett.71.4274 However, the boundary of the globule has self-affine roughness and does not determine the anticipated nonzero topological boundary contribution to entropic exponents. Scaling corrections are due to subleading contributions to the partition function corresponding to polymer configurations with one end located on the globule-solvent interface.  相似文献   

7.
We investigate several properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulations in three dimensions (3D). Motivated by several recent theoretical and numerical studies that are apparently at odds with each other, we estimate the exponents describing the scaling with chain length (Nof the average translocation time \(\ensuremath \langle\tau\rangle\) , the average velocity of the center of mass \(\ensuremath \langle v_{{\rm CM}}\rangle\) , and the effective radius of gyration \(\ensuremath \langle {R}_g\rangle\) during the translocation process defined as \(\ensuremath \langle\tau\rangle \sim N^{\alpha}\) , \(\ensuremath \langle v_{{\rm CM}} \rangle \sim N^{-\delta}\) , and \(\ensuremath {R}_g \sim N^{\bar{\nu}}\) respectively, and the exponent of the translocation coordinate (s -coordinate) as a function of the translocation time \(\ensuremath \langle s^2(t)\rangle\sim t^{\beta}\) . We find \(\ensuremath \alpha=1.36 \pm 0.01\) , \(\ensuremath \beta=1.60 \pm 0.01\) for \(\ensuremath \langle s^2(t)\rangle\sim \tau^{\beta}\) and \(\ensuremath \bar{\beta}=1.44 \pm 0.02\) for \(\ensuremath \langle\Delta s^2(t)\rangle\sim\tau^{\bar{\beta}}\) , \(\ensuremath \delta=0.81 \pm 0.04\) , and \(\ensuremath \bar{\nu}\simeq\nu=0.59 \pm 0.01\) , where \( \nu\) is the equilibrium Flory exponent in 3D. Therefore, we find that \(\ensuremath \langle\tau\rangle\sim N^{1.36}\) is consistent with the estimate of \(\ensuremath \langle\tau\rangle\sim\langle R_g \rangle/\langle v_{{\rm CM}} \rangle\) . However, as observed previously in Monte Carlo (MC) calculations by Kantor and Kardar (Y. Kantor, M. Kardar, Phys. Rev. E 69, 021806 (2004)) we also find the exponent α = 1.36 ± 0.01 < 1 + ν. Further, we find that the parallel and perpendicular components of the gyration radii, where one considers the “cis” and “trans” parts of the chain separately, exhibit distinct out-of-equilibrium effects. We also discuss the dependence of the effective exponents on the pore geometry for the range of N studied here.  相似文献   

8.
We consider a one-dimensional structure obtained by stringing two types of beads (short and long bonds) on a line according to a quasiperiodic rule. This model exhibits a new kind of order, intermediate between quasiperiodic and random, with a singular continuous Fourier transform (i.e., neither Dirac peaks nor a smooth structure factor). By means of an exact renormalization transformation acting on the two-parameter family of circle maps that defines the model, we study in a quantitative way the local scaling properties of its Fourier spectrum. We show that it exhibits power-law singularities around a dense set of wavevectorsq, with a local exponent(q) varying continuously with the ratio of both bond lengths. Our construction also sheds some new light on the interplay between three characteristic properties of deterministic structures, namely: (1) a bounded fluctuation of the atomic positions with respect to their average lattice; (2) a quasiperiodic Fourier transform, i.e., made of Dirac peaks; and (3) for sequences generated by a substitution, the number-theoretic properties of the eigenvalue spectrum of the substitution.  相似文献   

9.
This paper is concerned with the ensemble statistics of the dynamic responses of a random system subjected to harmonic excitations. Random point process theory is employed to derive general scaling laws with the Gaussian orthogonal ensemble assumption about the system natural frequencies. A scaled model is built to simulate the high-frequency vibrations of the original system. Specific forms of the scaling laws are presented for a mass-loaded plate regarding the scaling factors for the structural parameters. The ensemble statistics predicted from the scaled model are compared favorably with those obtained from the original system.  相似文献   

10.
11.
We study a model of complex band random matrices capable of describing the transitions between three different ensembles of Hermitian matrices: Gaussian orthogonal, Gaussian unitary and Poissonian. Analyzing numerical data we observe new scaling relations based on the generalized localization length of eigenvectors. We show that during transitions between canonical ensembles of random matrices the changes of statistical properties of eigenvalues and eigenvectors are correlated.  相似文献   

12.
We study a model of complex band random matrices capable of describing the transitions between three different ensembles of Hermitian matrices: Gaussian orthogonal, Gaussian unitary and Poissonian. Analyzing numerical data we observe new scaling relations based on the generalized localization length of eigenvectors. We show that during transitions between canonical ensembles of random matrices the changes of statistical properties of eigenvalues and eigenvectors are correlated.  相似文献   

13.
14.
Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides "ordered" from "chaotic" attractor dynamics. We study the scaling of the average number of dynamically relevant nodes and the median number of distinct attractors in such networks. Our calculations indicate that the correct asymptotic scalings emerge only for very large systems.  相似文献   

15.
Using field-theoretic arguments for self-avoiding walks on dilute lattices with site occupation concentrationp, we show that the-point size exponent p 0 of polymer chains remains unchanged for small disorder concentration (p>p c ). At the percolation thresholdp=p c , using a Flory-type approximation, we conjecture that pc 0 =5/(d B +7), whered B is the percolation backbone dimension. It shows that the upper critical dimensionality for the-point transition atp=p c shifts to a dimensiond c >3. We also propose that the-point varies practically linearly withp for 1>pp c .  相似文献   

16.
Front propagation described by Huygens' principle is a fundamental mechanism of spatial spreading of a property or an effect, occurring in optics, acoustics, ecology and combustion. If the local front speed varies randomly due to inhomogeneity or motion of the medium (as in turbulent premixed combustion), then the front wrinkles and its overall passage rate (turbulent burning velocity) increases. The calculation of this speedup is subtle because it involves the minimum-time propagation trajectory. Here we show mathematically that for a medium with weak isotropic random fluctuations, under mild conditions on its spatial structure, the speedup scales with the 4/3 power of the fluctuation amplitude. This result, which verifies a previous conjecture while clarifying its scope, is obtained by reducing the propagation problem to the inviscid Burgers equation with white-in-time forcing. Consequently, field-theoretic analyses of the Burgers equation have significant implications for fronts in random media, even beyond the weak-fluctuation limit.  相似文献   

17.
18.
19.
After a brief review of the scaling concepts for static and dynamic properties of polymer brushes in good solvents and Theta solvents, the Monte Carlo evidence is discussed. It is shown that under typical conditions the diameter of the last blob is of the order of 10-20% of the brush height, and therefore pronounced deviations from the self-consistent field predictions occur. In bad solvents, lateral microphase separation occurs leading to an irregular pattern of “dimples”. Particularly interesting is the response of brushes to shear deformation, and the interaction between two interpenetrating brushes. Recent attempts to understand the resulting shear forces via molecular-dynamics simulations are briefly described, and an outlook on related experiments is given. Dedicated to Prof. H.E. Stanley on the occasion of his 60th birthday Received 11 March 2002 and Received in final form 3 June 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号