首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe a novel method of manufacturing shape-controlled calcium alginate gel microparticles in a microfluidic device. Both manufacturing shape-controlled microparticles and synthesizing hydrogel microparticles could be performed simultaneously in the microfluidic device. The novel microfluidic device comprised of two individual flow-focusing channels and a synthesizing channel was successfully applied as a continuous microfluidic reactor to synthesize gel microparticles with size and shape control. By passive control based on the microchannel geometric confinement and liquid-phase flow rates, we succeeded in producing monodisperse sodium alginate microparticles with diverse shapes (such as plugs, disks, microspheres, rods, and threads) in the flow-focusing channels of the microfluidic device. The shape and size of the sodium alginate microparticles could be tuned by adjusting the flow rates of the various streams. Further stages of the chemical reaction could be initiated by mixing sodium alginate microparticles and calcium chloride (CaCl2) solution in the synthesizing channel. The shapes of the sodium alginate microparticles could be permanently preserved by the synthesis of calcium alginate gel microparticles. The preparation conditions of size- and shape-controlled calcium alginate microparticles and influence factors were studied.  相似文献   

2.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   

3.
Deng Y  Zhang N  Zhao L  Yu X  Ji X  Liu W  Guo S  Liu K  Zhao XZ 《Lab on a chip》2011,11(23):4117-4121
In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.  相似文献   

4.
This paper reports a novel microfluidic method for the production of cross-linked alginate microparticles and nanoparticles. We describe a continuous process relying on both thermodynamic and hydrodynamic factors to form microdroplets. A rapid cross-linking reaction thereafter allows solidification of the polymer droplets either within the microfluidic device or "off-chip" to form alginate micro- and nanoparticles. Monodisperse droplets are generated by extruding an aqueous alginate solution using an axisymmetric flow-focusing design. As they flow downstream in the channel, due to water and the continuous phase being partially miscible, the water diffuses very slowly out of the polymeric droplets into the transport fluid, which causes the shrinkage of the drops and the condensation of the polymer phase. The resulting size of the solid particles depends on the polymer concentration and the ensuing balance between the kinetics of the cross-linking reaction and the volume loss due to solvent diffusion. This work details both a single-step microfluidic technique for the formation of alginate microparticles of sizes ranging from 1 to 50 microm via near-equilibrium solvent diffusion within a microfluidic device and thereafter a two-step method, which was shown to generate biopolymer nanoparticles of sizes ranging from 10 to 300 nm. These novel methodologies are extremely flexible and can be extended to the preparation of micro- and nanoparticles from a wide range of single or mixed synthetic and biologically derived polymers.  相似文献   

5.
Jeong WC  Lim JM  Choi JH  Kim JH  Lee YJ  Kim SH  Lee G  Kim JD  Yi GR  Yang SM 《Lab on a chip》2012,12(8):1446-1453
Submicron emulsions could be produced via the tip-streaming process in a flow-focusing microfluidic device. In this article, the stability of the liquid cone and thread for tip-streaming mode could be significantly improved by employing a three-dimensional flow-focusing device, in which the hydraulic resistance was adjusted by modulating the channel heights in the flow focusing area, orifice, downstream and dispersed phase inlet channel. The pressure range for tip-streaming mode was enlarged significantly compared with two-dimensional flow-focusing devices. Therefore, monodisperse emulsions were produced under this tip-streaming mode for as long as 48 hours. Furthermore, we could control the size of emulsion drops by changing the pressure ratio in three-dimensional flow-focusing devices while the liquid cone was easily retracted during the adjustment of pressure ratio in two-dimensional flow-focusing devices. Furthermore, using the uniform submicron emulsion droplets as confining templates, polyethylene glycol (PEG) particles were produced with a narrow size distribution at the sub-micrometre scale. In addition, magnetic nanoparticles were added to the emulsion for magnetic PEG particles, which can respond to magnetic field and would be biocompatible.  相似文献   

6.
The spreading of a miscible liquid with a low surface tension on a water surface generates the directional motion of submerged polymer hydrogels, which could be attributed to convective flows resulting from the gradient of surface tension along the surface (Marangoni effect). The direction and velocity of this motion can be well controlled by altering the driving conditions. Furthermore, a spherical hydrogel can smartly find the path to walk through a microfluidic maze when liquid mixing occurs near the maze exit. This convenient chemical driving approach to transporting submerged objects in a desired way may be useful in microfluidics, micromechanics, and other applications.  相似文献   

7.
In this study, a novel method for the one-step fabrication of stacked hydrogel microstructures using a microfluidic mold is presented. The fabrication of these structures takes advantage of the laminar flow regime in microfluidic devices, limiting the mixing of polymer precursor solutions. To create multilayered hydrogel structures, microfluidic devices were rotated 90 degrees from the traditional xy axes and sealed with a cover slip. Two discreet fluidic regions form in the channels, resulting in the multilayered hydrogel upon UV polymerization. Multilayered patterned poly(ethylene glycol) hydrogel arrays (60 mum tall, 250 mum wide) containing fluorescent dyes, fluorescein isothiocyanate, and tetramethylrhodamine isothiocyanate were created for imaging purposes. Additionally, this method was used to generate hydrogel layers containing murine fibroblasts and macrophages. The cell adhesion promoter, RGD, was added to hydrogel precursor solution to enhance fibroblast cell spreading within the hydrogel matrix in one layer, but not the other. We were able to successfully generate patterns of hydrogels containing multiple phenotypes by using this technique.  相似文献   

8.
《Electrophoresis》2017,38(9-10):1318-1324
We developed the photo‐crosslinkable hydrogel microfluidic co‐culture device to study photothermal therapy and cancer cell migration. To culture MCF7 human breast carcinoma cells and metastatic U87MG human glioblastoma in the microfluidic device, we used 10 w/v% gelatin methacrylate (GelMA) hydrogels as a semi‐permeable physical barrier. We demonstrated the effect of gold nanorod on photothermal therapy of cancer cells in the microfluidic co‐culture device. Interestingly, we observed that metastatic U87MG human glioblastoma largely migrated toward vascular endothelial growth factor (VEGF)‐treated GelMA hydrogel‐embedding microchannels. The main advantage of this hydrogel microfluidic co‐culture device is to simultaneously analyze the physiological migration behaviors of two cancer cells with different physiochemical motilities and study gold nanorod‐mediated photothermal therapy effect. Therefore, this hydrogel microfluidic co‐culture device could be a potentially powerful tool for photothermal therapy and cancer cell migration applications.  相似文献   

9.
In the face of challenges in the development of excellent biocompatible materials for microfluidic device fabrication, we demonstrated that cross-linked cellulose (RCC) hydrogel can be used as the bulk material for microchips. The cellulose hydrogel was prepared from cellulose solution dissolved in an 8 wt% LiOH/15 wt% urea aqueous system with cooling by crosslinking with epichlorohydrin. Collagen as a key extracellular matrix component for promoting cell cultivation was cross-linked in the cellulose hydrogel to obtain cellulose–collagen (RCC/C) hybrid hydrogels. The experimental results revealed that cellulose-based hydrogel microchips with well-defined 2D or 3D microstructures possessed excellent structural replication ability, good mechanical properties, and cytocompatibility for cell culture as well as excellent dimensional stability at elevated temperature. The hydrogel, as a transparent microchip material, had no effect on the fluorescence behaviors of FITC-dextran and rhodamine-dextran, leading to the good conjunction with fluorescent detection and imaging. Moreover, collagen could be immobilized in the RCC/C hydrogel scaffold for promoting cell growth and generating stable chemical concentration gradients, leading to superior cytocompatibility. This work provides new hydrogel materials for the microfluidic technology field and mimicks a 3D cell culture microenvironment for cell-based tissue engineering and drug screening.  相似文献   

10.
PANI aqueous nanocolloids in their acid-doped, inherently conductive form were synthesised by means of suitable water soluble polymers used as stabilisers. In particular, poly(vinyl alcohol) (PVA) or chitosan (CT) was used to stabilise PANI nanoparticles, thus preventing PANI precipitation during synthesis and upon storage. Subsequently, e-beam irradiation of the PANI dispersions has been performed with a 12 MeV Linac accelerator. PVA-PANI nanocolloid has been transformed into a PVA-PANI hydrogel nanocomposite by radiation induced crosslinking of PVA. CT-PANI nanoparticles dispersion, in turn, was added to PVA to obtain wall-to-wall gels, as chitosan mainly undergoes chain scission under the chosen irradiation conditions. While the obtainment of uniform PANI particle size distribution was preliminarily ascertained with laser light scattering and TEM microscopy, the typical porous structure of PVA-based freeze dried hydrogels was observed with SEM microscopy for the hydrogel nanocomposites. UV?visible absorption spectroscopy demonstrates that the characteristic, pH-dependent and reversible optical absorption properties of PANI are conferred to the otherwise optically transparent PVA hydrogels. Selected formulations have been also subjected to MTT assays to prove the absence of cytotoxicity.  相似文献   

11.
PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究   总被引:4,自引:0,他引:4  
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)以及聚乙烯醇(PVA)为原料,制备了PVA-PAMPS-PAA三元互穿网络型(T-IPN)水凝胶.红外分析表明,PVA与PAA以及PAMPS之间形成了较强的氢键,使得PVA分子上的C—O伸缩震动吸收峰移向了低波数处.X射线衍射以及电镜分析表明,当PVA用量较低时,PVA能均匀的穿插于凝胶网络中,形成完善的互穿网络结构,当PVA用量过高时,部分的PVA结晶而使得凝胶出现相分离.研究了该三元互穿网络型水凝胶的溶胀性能,结果表明,该水凝胶的平衡溶胀比在200至340之间,并且随着AA以及AMPS用量的增加,凝胶的溶胀速率以及平衡溶胀比均升高.该三元互穿网络型水凝胶在酸性溶液中和在碱性溶液中表现出截然不同的消溶胀性能;并且随着溶液pH的升高,凝胶在pH=9.0附近出现体积突变,表现出pH敏感性.通过研究T-IPN水凝胶的抗压缩性能发现,利用线型高分子、柔性高分子网络以及刚性高分子网络制备的三元互穿网络型水凝胶能在高溶胀比下保持较高的强度.溶胀比为180的T-IPN水凝胶,其最大抗压缩强度可达12.1 MPa.进一步研究发现,凝胶的组成以及溶胀比均对凝胶的抗压缩强度和压缩应变均存在较大的影响.  相似文献   

12.
A hydrogel was prepared by mixing poly(allylguanidino-co-allylamine) hydrochloride (PAG) with poly(vinyl alcohol) (PVA) and repeatedly freezing and thawing the blend. The swelling behavior of the hydrogel was investigated as a function of the pH and ionic strength of the medium. In a salt-free aqueous medium, a size of the hydrogel was reduced below pH 3 and above pH 10, but the size was little affected in the pH range 3 ≈ 10. In a medium of constant ionic strength (μ = 0.1), the hydrogel's pH response was different: it was significantly reduced in size above pH 9, but the size was affected only moderately below pH 9. When the ionic strength of medium was varied at a fixed pH, the size change of the hydrogel was gradual. All these phenomena could be understood by observing that PAG displayed multiple protonation states due to pH and that the electrostatic interactions among the charges on the polymer backbone are shielded by the added electrolyte as the ionic strength of the medium is raised.  相似文献   

13.
Poly(vinyl alcohol) (PVA) and polyamidoamine (PAMAM) dendrimers are water-soluble, biocompatible and biodegradable polymers, which have been widely applied in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of PVA and amine-terminated PAMAM dendrimer G6-NH(2) were prepared by cyclic freezing/thawing treatment of aqueous solutions containing PVA and G6-NH(2). The FT-IR analysis and elemental analysis indicated that PAMAM dendrimer G6-NH(2) was successfully introduced into the formed hydrogels, possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups in PVA and PAMAM dendrimer in the process of freezing-thawing cycle. Compared with physically cross-linked PVA hydrogel, PVA/G6-NH(2) hydrogels show higher swelling ratios and faster re-swelling rate due to the higher hydrophilicity of PAMAM dendrimer G6-NH(2). Higher contents of G6-NH(2) in PVA/G6-NH(2) hydrogels resulted in higher swelling ratios and faster re-swelling rates. With increasing freezing/thawing cyclic times, the swelling ratios and re-swelling rates of PVA/G6-NH(2) hydrogels decreased, which is similar to that of physically cross-linked PVA hydrogel. Combining the special host property of polyamidoamine dendrimer, these novel physically cross-linked hydrogels are expected to have potential use in drug delivery, including improving drug-loading amounts in hydrogels and prolonging drug release time. Swelling ratios of physically cross-linked PVA/G6-NH(2)-50 hydrogels prepared by three, six, nine freezing/thawing cycles. The swelling equilibrium experiments were carried out in distilled water at 25 degrees C.  相似文献   

14.
大孔PAMPS/PVA半互穿网络型水凝胶的制备及其性能研究   总被引:1,自引:0,他引:1  
袁丛辉  林松柏  柯爱茹  刘博  全志龙 《化学学报》2009,67(16):1929-1935
以PEG6000为成孔剂, 合成了大孔聚(2-丙烯酰胺-2-甲基丙磺酸)/聚乙烯醇半互穿网络型(s-IPN)水凝胶. 红外分析表明, PVA与PAMPS之间形成了较强的氢键, 使得PVA分子上的C—O伸缩振动吸收峰移向了低波数处. X射线衍射分析发现, 当PVA用量较高时, 由于部分的PVA结晶, 使得凝胶的半互穿网络结构不均匀. 电镜分析结果表明, 没有使用成孔剂的凝胶表面成褶皱形, 不存在任何孔洞结构; 而以PEG6000为成孔剂的凝胶表面存在相互贯穿的大孔结构. 研究了该水凝胶的溶胀性能, 结果表明, 该水凝胶的平衡溶胀度在116至320之间; 而成孔剂PEG6000的加入能较大幅度提高凝胶的溶胀速率, 凝胶在240 min之内就能达到溶胀平衡. 对凝胶抗压缩性能的研究表明, 当PVA用量为9.1% (w)时, 凝胶的抗压缩强度最大, 可达12.0 MPa; 而成孔剂的加入会在一定程度削弱凝胶的抗压缩强度. 该凝胶具有较好的电场敏感性, 研究发现, 将吸去离子水达到溶胀平衡的凝胶放入施加有电场的0.2 mol•L-1 NaCl溶液中时, 凝胶迅速偏向阳极. 而PVA和成孔剂PGE6000的用量均对凝胶的偏转速度以及最大偏转角存在较大的影响.  相似文献   

15.
A new method to tailor liposome size and size distribution in a microfluidic format is presented. Liposomes are spherical structures formed from lipid bilayers that are from tens of nanometers to several micrometers in diameter. Liposome size and size distribution are tailored for a particular application and are inherently important for in vivo applications such as drug delivery and transfection across nuclear membranes in gene therapy. Traditional laboratory methods for liposome preparation require postprocessing steps, such as sonication or membrane extrusion, to yield formulations of appropriate size. Here we describe a method to engineer liposomes of a particular size and size distribution by changing the flow conditions in a microfluidic channel, obviating the need for postprocessing. A stream of lipids dissolved in alcohol is hydrodynamically focused between two sheathed aqueous streams in a microfluidic channel. The laminar flow in the microchannel enables controlled diffusive mixing at the two liquid interfaces where the lipids self-assemble into vesicles. The liposomes formed by this self-assembly process are characterized using asymmetric flow field-flow fractionation combined with quasi-elastic light scattering and multiangle laser-light scattering. We observe that the vesicle size and size distribution are tunable over a mean diameter from 50 to 150 nm by adjusting the ratio of the alcohol-to-aqueous volumetric flow rate. We also observe that liposome formation depends more strongly on the focused alcohol stream width and its diffusive mixing with the aqueous stream than on the sheer forces at the solvent-buffer interface.  相似文献   

16.
A new method was used for the production of hydrogels from green polymer with a higher swelling ratio. These hydrogels were synthesized first by graft copolymerization between acrylamide (AM) and poly(vinyl alcohol) (PVA) with alkaline or kraft lignin (AM‐PVA‐g‐lignin) and then by mixing with acrylamide monomer. The kraft and alkaline lignins were isolated from pulping liquor and characterized using UV and FT‐IR spectroscopy, and the formed hydrogels were characterized using FT‐IR spectroscopy and scanning electron microscopy (SEM). Compared with kraft lignin hydrogel, the alkaline lignin hydrogel had very high swelling ratios and slower water uptake and deswelling rates attributed to its compatible network structure. The hydrogels formed were used also to study the influence of sodium chloride on the absorption capacity at room temperature and swelling ratios at different temperatures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Nanocomposites of inherently conductive polyaniline (PANI) within a highly hydrophilic polyvinyl alcohol (PVA) based hydrogel have been produced by coupling a conventional dispersion chemical oxidative polymerization to a subsequent high energy irradiation step, in order to convert the polymer stabilizing the aqueous dispersion, namely the PVA, into a highly water swollen hydrogel incorporating the PANI particles. The incorporation of the electroactive and “pH-sensitive” polymer into a transparent and highly permeable hydrogel matrix has been pursued as a route to the development of a novel class of potentially biocompatible, smart hydrogels that can respond to changes of the surrounding environment with measurable changes in their optical properties. Absorption spectra show that the optical absorption bands typical of PANI, known to be reversibly affected by changes of the polymer oxidation state or pH or both, are well preserved in the PVA hydrogels. Even more interestingly, fluorescence is observed from the nanoparticles of PANI in its inherently conductive form, whose intensity is strongly affected by changes of pH. This has enhanced the importance of this material to a large extent from both a scientific and a practical point of view.  相似文献   

18.
Froeze-etching (FE) and critical point drying (CPD) techniques were employed to prepare samples for investigating surface and bulk structures of polyvinyl alcohol (PVA) hydrogels by scanning electron microscopy. The hydrogels were obtained by freezing homogeneous solutions containing PVA polymer in either water or an aqueous solution of dimethyl sulfoxide (DMSO). An oriented porous structure was observed in the PVA hydrogel prepared without DMSO. The structure on the surface was found to be more porous than in the bulk for PVA hydrogels prepared from aqueous DMSO solutions. For given compositions of the hydrogels, samples prepared by FE technique showed a highly porous fibrillar structure on the surface, while those prepared by CPD technique showed a collapsed fibrillar structure with much less porosity. This marked difference indicates a collapse of the surface structure caused by the CPD technique. The CPD technique also led to significant reduction in porosity and loss of fibrillar structure in the bulk. Volume shrinkage of hydrogels caused by dehydration in ethanol may be responsible for the surface collapse as well as alteration of bulk structure. The FE technique reveals a more native structure of hydrogels than the commonly used CPD technique. However, it suffers from disadvantages such as charging and structural damage at high magnifications.  相似文献   

19.
Interpenetrating polymer hydrogels (IPHs) of Poly (vinyl alcohol) (PVA) and Poly (acrylic acid) (PAAc) have been prepared by a sequential method: crosslinked PAAc chains were formed in aqueous solution by crosslinking copolymerization of acrylic acid and N, N′-methylenebisacrylamide in the presence of PVA. The application of freezing-thawing cycles (F-T cycles) leads to the formation of a PVA hydrogel within the synthesized PAAc hydrogel. The swelling and the viscoelastic properties of the prepared IPHs were evaluated on the basis of the structural features obtained from solid state 13C-NMR spectroscopy.  相似文献   

20.
We present a simple and easy to handle PDMS microfluidic device for neuronal cell culture studies in three-dimensional hydrogel scaffolds. The hydrogel is structured in parallel layers to reconstruct cell layers close to the natural environment. Dissociated cortical neurons of embryonic rats have been cultured in 0.5% w/v agarose including 0.2% w/v alginate. The cells formed neurite networks through neighboring cell free hydrogel layers. The cell culture showed neurite outgrowth in the microfluidic channel over more than seven days in vitro without perfusion. Culturing neurons in hydrogel layers surrounded by a liquid phase containing culture medium resulted in denser neuronal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号