首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cycloisomerization reaction of 1‐(iodoethynyl)‐2‐(1‐methoxyalkyl)arenes and related 2‐alkyl‐substituted derivatives gives the corresponding 3‐iodo‐1‐substituted‐1H‐indene under the catalytic influence of IPrAuNTf2 [IPr=1,3‐bis(2,6‐diisopropyl)phenylimidazol‐2‐ylidene; NTf2=bis(trifluoromethanesulfonyl)imidate]. The reaction takes place in 1,2‐dichloroethane at 80 °C, and the addition of ttbp (2,4,6‐tri‐tert‐butylpyrimidine) is beneficial to accomplish this new transformation in high yield. The overall reaction implies initial assembly of an intermediate gold vinylidene upon alkyne activation by gold(I) and a 1,2‐iodine‐shift. Deuterium labeling and crossover experiments, the magnitude of the recorded kinetic primary isotopic effect, and the results obtained from the reaction of selected stereochemical probes strongly provide support for concerted insertion of the benzylic C H bond into gold vinylidene as the step responsible for the formation of the new carbon–carbon bond.  相似文献   

2.
The cycloisomerization reaction of 1‐(iodoethynyl)‐2‐(1‐methoxyalkyl)arenes and related 2‐alkyl‐substituted derivatives gives the corresponding 3‐iodo‐1‐substituted‐1H‐indene under the catalytic influence of IPrAuNTf2 [IPr=1,3‐bis(2,6‐diisopropyl)phenylimidazol‐2‐ylidene; NTf2=bis(trifluoromethanesulfonyl)imidate]. The reaction takes place in 1,2‐dichloroethane at 80 °C, and the addition of ttbp (2,4,6‐tri‐tert‐butylpyrimidine) is beneficial to accomplish this new transformation in high yield. The overall reaction implies initial assembly of an intermediate gold vinylidene upon alkyne activation by gold(I) and a 1,2‐iodine‐shift. Deuterium labeling and crossover experiments, the magnitude of the recorded kinetic primary isotopic effect, and the results obtained from the reaction of selected stereochemical probes strongly provide support for concerted insertion of the benzylic C? H bond into gold vinylidene as the step responsible for the formation of the new carbon–carbon bond.  相似文献   

3.
The effect of type and concentration of external donor and hydrogen concentration on oligomer formation and chain end distribution were studied. Bulk polymerization of propylene was carried out with two different Ziegler‐Natta catalysts at 70 °C, one a novel self‐supported catalyst (A) and the other a conventional MgCl2‐supported catalyst (B) with triethyl aluminum as cocatalyst. The external donors used were dicyclopentyl dimethoxy silane (DCP) and cyclohexylmethyl dimethoxy silane (CHM). The oligomer amount was shown to be strongly dependent on the molecular weight of the polymer. Catalyst A gave approximately 50 % lower oligomer content than catalyst B due to narrower molecular weight distribution in case of catalyst A. More n‐Bu‐terminated chain ends were found for catalyst A indicating more frequent 2,1 insertions. Catalyst A also gave more vinylidene‐terminated oligomers, suggesting that chain transfer to monomer, responsible for the vinylidene chain ends, was a more important chain termination mechanism for this catalyst, especially at low hydrogen concentration. Low site selectivity, due to low external donor concentration or use of a weak external donor (CHM), was also found to increase formation of vinylidene‐terminated oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 351–358, 2010  相似文献   

4.
Density functional calculations of the adsorption of ethynylbenzene on the Au(111) surface show that, after cleavage of the C-H bond, the terminal carbon makes a strong covalent bond to the surface. The bond energy is shown to be about 70 kcal.mol(-1) with the fcc hollow site being most stable and the molecule oriented perpendicular to the surface. Adsorption without elimination of hydrogen is also possible via a hydrogen 1,2 shift to form a vinylidene surface-bound species, or opening of the C-C triple bond and adsorption through the two carbon atoms in a flat conformation. The reaction energy for formation of the surface-bound vinylidene is estimated to be 5 kcal.mol(-1) exothermic relative to the isolated ethynylbenzene and gold substrate.  相似文献   

5.
A synthesis of unconjugated (E)‐enediynes from allenyl amino alcohols is reported and their gold‐catalyzed cascade cycloaromatization to a broad range of enantioenriched substituted isoindolinones has been developed. Experimental and computational studies support the reaction proceeding via a dual‐gold σ,π‐activation mode, involving a key gold‐vinylidene‐ and allenyl‐gold‐containing intermediate.  相似文献   

6.
A general scheme for the endo‐ and exo‐cyclization of furan reactivity with [L ‐AuIII, IClx] with (x = 3, 1 and L ‐acetylene and vinylidene) complexes is investigated using density functional theory (DFT) code. Two conceivable mechanisms via a [4 + 2] Diels–Alder process or carbene complex are analyzed. According to the activation energy values of the gold (III and I) catalyst, the first mechanism, which implies the Diels–Alder reaction of AuIII, is thermodynamically favored and gives more evidence of the intramolecular addition of the furan with the alkynes. The second mechanism, presumably assisted by the spontaneous formation of the exo‐vinylidene complexes and intermediates of gold (III, I) by forming the carbene complex, is kinetically favored. Additionally, we compare our results with other structures with intramolecular additions that exhibit the quasi‐similarity of gold analogue structures. Differences in activation energies are observed, according to the functional used. Finally, we probe the solvent effects, which decrease the energy barrier in the path. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
An efficient and convenient synthesis of useful linear cyclopentenone‐fused polycyclic compounds has been achieved through a novel gold(I)‐catalyzed transformation of diynes. The method demonstrates high product yields and tolerates of a wide variety of important functional groups. Gold‐vinylidene formation, methoxy group migration, and Nazarov‐type cyclization are proposed to be the key steps in the reaction pathway. The synthetic utility of this method is demonstrated by converting the product to eight‐membered‐ring‐fused compound.  相似文献   

8.
The last years have witnessed many gold‐catalyzed reactions of alkynes. One of the most prominent species in the reaction of two alkyne units is the vinyl‐substituted gold vinylidene intermediate. Here, we were able to show that the reaction of a haloacetylene and an alkyne proceeds via a hitherto overlooked intermediate, namely the cyclopropenylmethyl cation. The existence and relative stability of this concealed intermediate is verified by quantum chemical calculations and 13C‐labeling experiments. A comparison between the cyclopropenylmethyl cation and the well‐known vinylidene intermediate reveals that the latter is more stable only for smaller cycles. However, this stability reverses in larger cycles. In the case of the smallest representative of both species, the vinylidene cation is the transition state en route to the cyclopropenylmethyl cation. The discovery of this intermediate should help to get a deeper understanding for gold‐catalyzed carbon–carbon bond‐forming reactions of alkynes. Furthermore, since enynes can be formed from the cyclopropenylmethyl cation, the inclusion of this intermediate should enable the development of new synthetic methods for the construction of larger cyclic halogenated and non‐halogenated conjugated enyne systems.  相似文献   

9.
The reaction of alkynes with [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Me, Ph, Cy) affords, depending on the structure of the alkyne and the substituent of the phosphine ligand, allyl carbene or butadienyl carbene complexes. These reactions involve the migration of the phosphine ligand or a facile 1,2 hydrogen shift. Both reactions proceed via a metallacyclopentatriene complex. If no alpha C[bond]H bonds are accessible, allyl carbenes are formed, while in the presence of alpha C[bond]H bonds butadienyl carbenes are typically obtained. With diphenylacetylene, on the other hand, a cyclobutadiene complex is formed. A different reaction pathway is encountered with HC[triple bond]CSiMe(3), ethynylferrocene (HC[triple bond]CFc), and ethynylruthenocene (HC[triple bond]CRc). Whereas the reaction of [RuCp(PR(3))(CH(3)CN)(2)]PF(6) (R=Ph and Cy) with HC[triple bond]CSiMe(3) affords a vinylidene complex, with HC[triple bond]CFc and HC[triple bond]CRc this reaction does not stop at the vinylidene stage but subsequent cycloaddition yields allenyl carbene complexes. This latter C[bond]C bond formation is effected by strong electronic coupling of the metallocene moiety with the conjugated allenyl carbene unit, which facilitates transient vinylidene formation with subsequent alkyne insertion into the Ru[double bond]C bond. The vinylidene intermediate appears only in the presence of bulky substituents of the phosphine coligand. For the small R=Me, head-to-tail coupling between two alkyne molecules involving phosphine migration is preferred, giving the more usual allyl carbene complexes. X-ray structures of representative complexes are presented. A reasonable mechanism for the formation of both allyl and allenyl carbenes has been established by means of DFT calculations. During the formation of allyl and allenyl carbenes, metallacyclopentatriene and vinylidene complexes, respectively, are crucial intermediates.  相似文献   

10.
Differently substituted terminal alkynes that bear sulfonate leaving groups at an appropriate distance were converted in the presence of a propynyl gold(I) precatalyst. After initial formation of a gold acetylide, a cyclization takes place at the β‐carbon atom of this species. Mechanistic studies support a mechanism that is related to that of dual gold‐catalyzed reactions, but for the new substrates, only one gold atom is needed for substrate activation. After formation of a gold vinylidene complex, which forms a tight contact ion pair with the sulfonate leaving group, recombination of the two parts delivers vinyl sulfonates, which are valuable targets that can serve as precursors for cross‐coupling reactions, for example.  相似文献   

11.
A novel alkenylation reaction of pyridine is developed. Heating a cationic ruthenium vinylidene complex [CpRu(=C=CHR)(PPh(3))(2)]PF(6) in pyridine at 100-125 degrees C for 24 h affords (E)-2-alkenylpyridine. Initially, pyridine coordinates to ruthenium by displacement of one of the phosphine ligands. Then, [2 + 2] heterocycloaddition occurs to form a four-membered ruthenacyclic complex. Deprotonation of the beta-hydrogen affords a neutral pi-azaallyl complex. Protonolysis furnishes the product. As a result, a vinylidene group is inserted into the alpha C-H bond of pyridine. The alkenylation reaction is made catalytic in ruthenium by the use of (alkyn-1-yl)silane as the vinylidene source. Treatment of (alkyn-1-yl)trimethylsilane with pyridine in the presence of a cationic ruthenium complex [CpRu(PPh(3))(2)]PF(6) affords the corresponding (E)-2-alkenylpyridine in good yield in a regio- and stereoselective manner.  相似文献   

12.
During the course of investigating the development of catalytic reactions involving ruthenium vinylidene intermediates, a novel divergence of reactivity was discovered. The oxidative cyclization of bis-homopropargylic alcohols with Ru(+2) complexes as catalysts and N-hydroxysuccinimide as oxidant, which requires formation of a ruthenium vinylidene intermediate, is complicated by the simple electrophilically initiated direct attack of the hydroxyl group on a pi-complex of the alkyne and ruthenium. A catalytic system composed of CpRu[(p-CH(3)O(6)H(4))(3)P](2)Cl and excess (p-CH(3)O-C(6)H(4))(3)P directs the reaction toward the oxidative cyclization to form delta-lactones in good yields. Significantly, a simple switch of catalyst to CpRu[(p-FC(6)H(4))(3)P](2)Cl redirects the reaction to a cycloisomerization to form dihydropyrans in good yields. The synthetic utility of the oxidative cyclization is illustrated by the synthesis of oviposition attractant pheromone of the mosquito Culex pipens. The utility of the cycloisomerization to dihydropyrans is demonstrated by an iterative process leading to the antiviral agent narbosine B. A rationale for this dramatic switch by simple ligand modification is proposed.  相似文献   

13.
A rhodium(I)-catalyzed addition-cyclization of 1,5-enynes with aryl- and alkenylboronic acids has been developed. The reaction allows for efficient C-C coupling of multiple reactive components while accomplishing a net R,H-addition in a single step under mild conditions. In the presence of [Rh(OH)(COD)]2 catalyst and triethylamine base in methanol solvent, a range of 1,5-enynes undergo an intermolecular addition with a wide variety of aryl- and alkenylboronic acids and concomitant endo-selective cyclization to yield 1-aryl and alkenyl-substituted cyclopentene derivatives as the products. Deuterium labeling studies suggest that the reaction involves formation of a rhodium vinylidene complex with the terminal alkyne of the enyne substrate. The subsequent migration of the aryl or alkenyl group from the rhodium center to the alpha-carbon of the vinylidene ligand gives a vinyl rhodium complex, a formal 1,1-carbometalation process of the alkyne. This vinyl rhodium then adds to the pendent alkene, and the protodemetalation of the resulting rhodium enolate affords the product.  相似文献   

14.
Reaction of (PCP)Ru(CO)(Cl) (1) with NaBAr'4 yields the bimetallic product [[(PCP)Ru(CO)](2)(mu-Cl)][BAr'4] (2). The monomeric five-coordinate complexes [(PCP)Ru(CO)(eta1-ClCH2Cl)][BAr'4] (3) and [(PCP)Ru(CO)(eta1-N2)][BAr'4] (4) are synthesized upon reaction of (PCP)Ru(CO)(OTf) (6) with NaBAr'4 in CH2Cl2 or C6H5F, respectively. The solid-state structures of 2, 3, and 4 have been determined by X-ray diffraction studies of single crystals. The reaction of 3 with PhCHN2 or PhCCH affords carbon-carbon coupling products involving the aryl group of the PCP ligand in transformations that likely proceed via the formation of Ru carbene or vinylidene intermediates. Density functional theory and hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the bonding of weak bases to the 14-electron fragment [(PCP)Ru(CO)]+ and the energetics of different isomers of the product carbene and vinylidene complexes.  相似文献   

15.
Y Xiao  L Zhang 《Organic letters》2012,14(17):4662-4665
The cyclic α-imino gold carbene intermediate B is most likely generated in situ via regioselective nitrene transfer from an azido group to a tethered terminal alkyne in the presence of a gold catalyst and at ambient temperature. This highly electrophilic intermediate can react with a weakly nucleophilic nitrile, which is used as the reaction solvent, to deliver a bicyclic imidazole rapidly in an overall bimolecular [2 + 2 + 1] cycloaddition and in mostly serviceable yield. The competing intramolecular Huisgen reaction, although likely also catalyzed by gold, is minimized by using AuCl(3) as the catalyst.  相似文献   

16.
New poly(vinylidene fluoride) based multi-functional (electroconductive, bioactive and catalytic) nano-biowebs were prepared through gamma radiation induced formation of silica and gold nanoparticles (Au NPs) within electrospun (poly vinylidene fluoride) nanofiberous membranes. The multifunctional membrane is designated as PVdF@silica/Au ESNFM. The morphology of PVdF@silica/Au ESNFM was examined by field emission scanning electron microscopy. The presence of Au particles was confirmed by energy dispersive x-ray analysis. The crystal structure of Au particles and the formation of silica were confirmed by X-ray diffraction analysis. The multi-functionalities (electroconductive, bioactive and catalytic) of the nano-webs were evaluated by cyclic voltammetry. Cytochrome c was immobilized to generate nano-bioweb (PVdF@silica/Au/cyt c ESNFM), which exhibited electrochemical responses to nitrite ions.  相似文献   

17.
Vinyl and vinylidene group formation is detected in the initial stages of polyethylene processing. In the high temperature range (170-200 °C) the amount formed is small but significant. Formation of these double bonds is usually obscured by their rapid consumption. Bimolecular hydroperoxide decomposition does not seem to be an important source for these products in the early stages of processing. Vinyl and vinylidene group formation can be attributed mainly to intramolecular decomposition of special hydroperoxide groups. The data suggest vinyl groups to arise from secondary hydroperoxide groups formed in α-position to methyl branching. Intramolecular hydroperoxide decomposition involving a primary hydrogen atom from the methyl group yields a vinyl group and an aldehyde. Vinylidene groups seem to arise from secondary hydroperoxide groups formed in α-position to quaternary structures that necessarily include one methyl group. Intramolecular hydrogen abstraction of a primary hydrogen atom from the methyl group yields a vinylidene group and an aldehyde. The calculated rate parameters are in agreement with the thermochemical estimations relative to intramolecular abstraction of primary hydrogen atoms for both reactions. Vinyl groups are also formed on bimolecular hydroperoxide decomposition. The yield of vinylidene groups from the last reaction is negligible.  相似文献   

18.
A rare eta2-butadienyl Ir(III) complex with a weak Ir...C bond is formed from 1-alkyne double insertion with the independent double alkyne to vinylidene rearrangement. A reaction intermediate is isolated, and labeling and crossover experiments indicate the intramolecularity of both alkyne to vinylidene rearrangements.  相似文献   

19.
Structural regular polyaniline was synthesized via a modified-chemical oxidative polymerization reaction. Highly hydrophilic polyaniline (PANi) and polyaniline-poly(vinylidene fluoride) blend (PANi-PVDF) membranes were prepared by solution casting and phase inversion techniques. Both of the mechanical and filtration properties of the membranes depend on the polymer composition and doping level of the blends. The elasticity of the membrane is greatly improved upon introducing poly(vinylidene fluoride) into the blend. The water permeability of the blend membranes is further enhanced when the membranes are doped with hydrochloric acid. The PANi-PVDF blend membranes are capable of recovering metallic gold from the acid/halide leaching streams spontaneous and sustainably, and are promising candidates for wastewater treatments in electronic industries.  相似文献   

20.
We have studied the non-conventional trans-hydroboration reaction of alkynes both experimentally and theoretically. A catalytic system based on the in situ mixture of [{Rh(cod)Cl}(2)]/PCy(3) (cod=1,5-cyclooctadiene, Cy=cyclohexyl) has been able to activate pinacolborane and catecholborane and transfer boryl and hydride groups onto the same unhindered carbon atom of the terminal alkynes. The presence of a base (Et(3)N) favored the non-conventional trans-hydroboration over the traditional cis-hydroboration. Varying the substrate had a significant influence on the reaction, with up to 99% conversion and 94% regioselectivity observed for para-methyl-phenylacetylene. Both DFT and quantum mechanical/molecular mechanical ONIOM calculations were carried out on the [RhCl(PR(3))(2)] system. To explain the selectivity towards the (Z)-alkenylboronate we explored several alternative mechanisms to the traditional cis-hydroboration, using propyne as a model alkyne. The proposed mechanism can be divided into four stages: 1) isomerization of the alkyne into the vinylidene, 2) oxidative addition of the borane reagent, 3) vinylidene insertion into the Rh-H bond, and finally 4) reductive elimination of the C-B bond to yield the 1-alkenylboronate. Calculations indicated that the vinylidene insertion is the selectivity-determining step. This result was consistent with the observed Z selectivity when the sterically demanding phosphine groups, such as PCy(3) and PiPr(3), were introduced. Finally, we theoretically analyzed the effect of the substrate on the selectivity; we identified several factors that contribute to the preference for aryl alkynes over aliphatic alkynes for the Z isomer. The intrinsic electronic properties of aryl substituents favored the Z-pathway over the E-pathway, and the aryl groups containing electron donating substituents favored the occurrence of the vinylidene reaction channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号