首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiscale characterization was performed on an Al–Mg alloy, Al 5754 O-temper, including in situ mechanical deformation in both the scanning electron microscope and the transmission electron microscope. Scanning electron microscopy characterization showed corresponding inhomogeneity in the dislocation and Mg distribution, with higher levels of Mg correlating with elevated levels of dislocation density. At the nanoscale, in situ transmission electron microscopy straining experiments showed that dislocation propagation through the Al matrix is characterized by frequent interactions with obstacles smaller than the imaging resolution that resulted in the formation of dislocation debris in the form of dislocation loops. Post-mortem chemical characterization and comparison to dislocation loop behaviour in an Al–Cr alloy suggests that these obstacles are small Mg clusters. Previous theoretical work and indirect experimental evidence have suggested that these Mg nanoclusters are important factors contributing to strain instabilities in Al–Mg alloys. This study provides direct experimental characterization of the interaction of glissile dislocations with these nanoclusters and the stress needed for dislocations to overcome them.  相似文献   

2.
In this paper, an innovative semisolid rheo-rolling process of Mg–3Sn–1Mn alloy was proposed; the temperature distribution and its influence on microstructure of Mg–3Sn–1Mn alloy during the semisolid rheo-rolling process were studied. The alloy temperature decreased gradually from the entrance to the exit of the slope plate, and the alloy velocity increased gradually. The temperature of the alloy near the slope plate surface was lower than that of melt surface. The alloy temperature decreased gradually from the entrance to the exit of the roll gap. In the roll gap, the nearer the roll was, the lower the alloy temperature was. With the increment of casting temperature, the semisolid zone increased and moved forward from the filling mouth to the exit of the roll gap. When the casting temperature was 670°C and the roll speed was 0.052?m/s, Mg–3Sn–1Mn alloy strip with good surface quality was obtained. Homogeneous microstructure was obtained. Mechanical properties of the present product at room temperature or 150°C are higher than that of Mg–3Sn–1Mn–0.87Ce prepared by casting.  相似文献   

3.
Y.Q. Chen  B. Wang  H.Q. Liu 《哲学杂志》2013,93(18):2269-2278
Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy were used to study the microstructure evolution of Al–Cu–Mg alloy during the initial stage of homogenization. It was found that two types of precipitation-free zones (PFZs) can form concurrently: one near grain boundaries and the other at the grain centres. Depth profile analyses of solute concentrations and dislocation-loop distributions strongly suggested that the formations of the two type of PFZs are different, due solely and exclusively to solute and vacancy depletion, respectively. A mechanism model was proposed to explain the concurrent formation of the two different type of PFZs during the initial stage of homogenization.  相似文献   

4.
Z.-Z. Shi  X.-F. Gu 《哲学杂志》2013,93(9):1071-1082
The crystallographic morphology of β-Mg2Sn precipitates at (near) Burgers orientation relationship (OR) with respect to the α-Mg matrix in a Mg–Sn–Mn alloy was investigated by transmission electron microscopy (TEM). Two irrational facets of the precipitates were found to be F1 ~// (?1 1 0.74)β and F2 ~// (?1 1 ?3.1)β. The facets are interpreted according to interfacial structures. The presence of a singular dislocation structure in F1 requires a small rotation of 0.21° from the Burgers OR. The calculated morphology is consistent with the observations.  相似文献   

5.
Laser surface melting (LSM) is known to enhance the wear and corrosion resistance of Mg alloys, but its effect on microstructural evolution of Mg alloys is not well understood. An effort has been made to study the effect of rapid solidification following LSM on the microstructural evolution of AZ91D Mg alloy. The results of X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy indicated that the solidification microstructure in the laser-melted zone was mainly cellular/dendrite structure of primarily α-Mg phase and continuous network of β-Mg17Al12 phase. Numerical prediction of the laser-melted zone suggested that cooling rates increased strongly from the bottom to the top surface in the irradiated regions. An attempt has been made to correlate dendrite cell sizes of the solidification microstructure with the cooling rates in the laser-treated AZ91D Mg alloy.  相似文献   

6.
Effects of addition of Zn (up to 1 wt%) on microstructure, precipitate structure and intergranular corrosion (IGC) in an Al–Mg–Si alloys were investigated. During ageing at 185?°C, the alloys showed modest increases in hardness as function of Zn content, corresponding to increased number densities of needle-shaped precipitates in the Al–Mg–Si alloy system. No precipitates of the Al–Zn–Mg alloy system were found. Using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the Zn atoms were incorporated in the precipitate structures at different atomic sites with various atomic column occupancies. Zn atoms segregated along grain boundaries, forming continuous film. It correlates to high IGC susceptibility when Zn concentration is ~1wt% and the materials in peak-aged condition.  相似文献   

7.
In order to find the origin of photoemission and increase the low quantum yield (QY) suitable metals such as magnesium and aluminium, a correlation between the QY in the UV-spectrum range and the electron density of states (DOS) near the Fermi level is considered for light metal alloy systems by using the data of UV-photoelectron spectroscopy, volume paramagnetic susceptibility, and HRTEM studies. The spectral responses of the photoyield for the HCP Mg–Ba alloys are proven to be in agreement with Fowler’s law for a near-free-electron model. The Mg16Ba2 bimetallic nanocluster-induced distribution of the DOS, calculated by the ab initio FLAPW method near the Fermi level closely resembles that obtained by the UV-photoelectron spectroscopy in the bulk Mg–2% Ba alloy. It means that a substantial increase in the DOS near the Fermi level is caused by the electron structure of the cluster to be formed. These metallic-like nanoclusters of 8 nm in diameter embedded in the bulk of extended solid solution crystals act as new and much more efficient photoemission centers and insure a drastic increase in the QY of the massive magnesium photocathode by several orders of magnitude. The new approach is applicable to similar metal alloy systems such as the FCC Al–Li, Ba as regards their treatment on the basis of the physical principles of small-scale alloying with emission-active and cluster-forming additives.  相似文献   

8.
The solidification microstructure plays a critical role in determining the surface properties of laser-treated magnesium alloys. The purpose of this paper is to study the solidification microstructures of AZ91D Mg alloy following millisecond- and nanosecond-pulse Nd:YAG laser irradiation. The solidification microstructural evolution of laser-melt AZ91D Mg alloy was investigated using X-ray diffractometry, scanning electron microscopy, energy-dispersive X-ray spectrometer and transmission electron microscopy. Much refined α-Mg phase and β-Mg17Al12 intermetallics were observed in the microstructure after laser surface melting. Periodic and successive structure was observed in the millisecond irradiated surface and the melt depth was more than 100 μm. The solidification microstructure was mainly cellular/dendrite structures together with a large number of β-Mg17Al12 nano-particles. Micron holes were found in the nanosecond irradiated surface and the melt depth was shallow at 50 μm. Millisecond-pulse Nd:YAG laser was found to be more suitable for Mg alloy surface treatment due to sufficient melt depth.  相似文献   

9.
A.-M. Zahra  C. Y. Zahra 《哲学杂志》2013,93(31):3735-3754
Calorimetric measurements and electron microscopy observations were performed on Al-2.5?mass% Cu-1.5?mass% Mg alloys containing also 0.4, 1 or 2% Ag or 0.5% Si, in order to improve understanding of the relationships between precipitation processes and age hardening. The analogous behaviour of calorimetric and hardness data confirms that the first hardening stage is initiated in all alloys by GPB zone formation which occurs via a nucleation and growth controlled mechanism. The vacancy-trapping effect of Mg is increased by Ag and Si additions and leads to slower precipitation kinetics. Consequently, refined GPB zones sizes are obtained leading to an increase in hardness with respect to the ternary alloy. During the second hardening stage, the formation of the more stable S′ phase increases the total amount of strengthening precipitates in the ternary alloy. Phases typical for binary Al–Cu alloys form additionally in the Si-containing alloy. In the Ag-bearing alloys, precipitation of the hardening X′ phase occurs the earlier the higher the Ag content; it is followed by S′ precipitation. During heating of the ternary alloy, the S′ phase forms after substantial dissolution of GPB zones and of the S′′ phase identified by high resolution electron microscopy; this contradicts the concept of a continuous precipitation sequence.  相似文献   

10.
The effect of 10% pre-ageing deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy aged 10?min at 190°C was investigated by high-resolution transmission electron microscopy (HRTEM) in ?100?Al projections. The precipitate nucleation was heterogeneous since all precipitates were found to grow on dislocation lines. The pre-ageing deformation suppresses growth of Gunier–Preston zones and β″ phase. The resulting precipitates are still largely coherent with the aluminium matrix. They appear with two main morphologies; one consists of independent, small cross-sections arising from needles with disordered β′ and B′ structures. The other morphology is a much more continuous decoration where precipitates have elongated and conjoined cross-sections and where a particular precipitate phase could not be determined. All precipitates in this work were found to contain a common near-hexagonal sub-cell (SC) with projected bases a?=?b?≈?0.4?nm. This strongly indicates that they are built over the same Si network, which recently has been demonstrated to exist in all precipitates in the Al–Mg–Si(–Cu) system. For the discrete morphology type the network has one hexagonal base vector parallel to or very near a ?510?Al direction. For the continuous type, one base vector falls along a ?100?Al direction. This orientation of the network is different from previous studies of ternary Al–Mg–Si alloys and must be a direct consequence of the deformation.  相似文献   

11.
H. Zhou  W.Z. Xu  W.W. Jian  G.M. Cheng  X.L. Ma  W. Guo 《哲学杂志》2013,93(21):2403-2409
Mg–RE alloys are among the strongest Mg-based alloys due to their unique precipitation structures. A previously unobserved metastable phase (βT) is found to coexist with reported β″ and β′ metastable phases under peak ageing conditions in a Mg–Gd–Y–Zr alloy. The position of the RE elements within the βT phase is identified using atomic-resolution high-angle annular dark field scanning transmission electron microscopy imaging, and the βT phase is shown to have an orthorhombic structure with a stoichiometry of Mg5RE. Based on these observations, a new precipitation sequence is proposed.  相似文献   

12.
Oxide formation on a clean AZ91-Mg alloy surface has been characterized by X-ray photoelectron spectroscopy (XPS), while the chemical composition of a mirror-polished sample was assessed by scanning Auger microscopy (SAM) and scanning electron microscopy (SEM) at different microstructural regions, referred to as the grain boundary, matrix and particle regions. XPS and SAM confirmed that Mg and Al are always present in the surface regions probed, whereas bulk characterization with energy dispersive X-ray (EDX) analysis was necessary to detect the additional alloying elements, Mn and Zn. Coating by 1% solutions of BTSE, γ-GPS and γ-APS at their natural pH values gave etching of the surface Mg oxide. Adsorption occurs on the different regions, but the attachment is weak, especially because of the fragile nature of the underlying substrate. However, increasing the concentration of BTSE to 4% formed a thicker and denser coating with better prospects for substrate protection.  相似文献   

13.
The formation of zinc phosphate (ZPO) coatings on 2024-T3 aluminum alloy was studied using scanning electron microscopy (SEM), scanning Auger microscopy (SAM) and X-ray photoelectron spectroscopy (XPS), with an emphasis on microstructural effects involving second-phase particles and the alloy matrix. Surface polishing results in an Al-Cu-Mg particle surface that contains metallic Cu as well as an overlayer of aluminum and magnesium oxide, while larger amounts of aluminum oxide are present on the Al-Cu-Fe-Mn particle and matrix. When dipped in an acidic ZPO coating solution, the oxide covering the Al-Cu-Mg particle is etched most easily, and metallic Cu near the surface makes that region most cathodic, allowing more coating deposition compared with the other regions. The oxides on the Al-Cu-Fe-Mn and matrix regions are similar, thereby confirming that the observed differences in ZPO coating characteristics at these two regions arise from their underlying electrochemical characteristics. Immersion of a coated 2024-Al sample in corrosive NaCl solution for extended periods indicates that the ZPO provides better protection to the second-phase particles than to the matrix.  相似文献   

14.
ABSTRACT

The thermal compression behaviour of Al–Zn–Mg alloy was studied on a thermal simulator machine at the temperature range of 380–540°C and strain rate range of 0.01–10?s?1. The constitutive equation and 3D processing map of the alloys were established. The microstructure characteristics of the alloy were studied by metallographic observation, electron back-scatter diffraction (EBSD) analysis and transmission electron microscopy (TEM) microstructure analysis. The results show that the peak stress of high-temperature deformation of alloy decreases with the increase of deformation temperature and increases with the increase of strain rate. The dynamic recovery of the alloy occurs at the temperature range of 380–460°C and the strain rate range of 0.01–0.1?s?1. The dynamic recrystallization of the alloy occurs at the temperature range of 460–500°C and the strain rate range of 0.01–0.1?s?1. The alloy maintains fine and uniform recrystallized grains at a temperature range of 460–480°C and a strain rate range of 0.01–0.1?s?1, which is suitable for hot working.  相似文献   

15.
Precipitates in a lean Al–Mg–Si alloy with low Cu addition (~0.10 wt.%) were investigated by aberration-corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Most precipitates were found to be disordered on the generally ordered network of Si atomic columns which is common for the metastable precipitate structures. Fragments of known metastable precipitates in the Al–Mg–Si–(Cu) alloy system are found in the disordered precipitates. It was revealed that the disordered precipitates arise as a consequence of coexistence of the Si-network. Cu atomic columns are observed to either in-between the Si-network or replacing a Si-network column. In both cases, Cu is the center in a three-fold rotational symmetry on the Si-network. Parts of unit cells of Q′ phase were observed in the ends of a string-type precipitates known to extend along dislocation lines. It is suggested that the string-types form by a growth as extension of the B′/Q′ precipitates initially nucleated along dislocation lines. Alternating Mg and Si columns form a well-ordered interface structure in the disordered Q′ precipitate. It is identical to the interface of the Q′ parts in the string-type precipitate.  相似文献   

16.
Precipitation in a Mg-rich Al–Mg–Si–Ge–Cu alloy was investigated using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. The precipitates were needle or lath shaped with the longest dimension parallel to ?001?Al. The precipitates had no repeating unit cell when viewed along this direction. However, the precipitate structure in projection consisted of a hexagonal network of mixed Si and Ge columns, with Mg, Al, and Cu columns occupying specific sites in between the network columns. The Cu columns appeared with the same local arrangement of atomic columns as in Al–Mg–Si–Cu precipitates, and the Cu-free regions consisted of structural units with Mg and Al at specific sites. These structural units were often arranged in a locally ordered fashion, and in some cases the projected structure possessed and overall point symmetry. The amount of strain on the surrounding matrix was found to vary depending on the width of the precipitate cross section.  相似文献   

17.
《Composite Interfaces》2013,20(5-6):347-359
Scanning electron microscopy (SEM), polarized light microscopy (PLM), and transmission electron microscopy (TEM) techniques have been used to characterize the normal surface and flank surface microstructure of a polyacrylonitrile (PAN)-based carbon fiber reinforced chemical vapor infiltrated (CVI) matrix carbon–carbon composite. Optical and SEM results indicate that the CVI deposit consists of two structures: an isotropic phase is present in the fiber bundle-bundle junctions and a second highly oriented lamellar structure is present in the intrabundle matrix. TEM shows that matrix platelets are highly parallel to the fiber axis and the crystallites of the matrix near the fiber surface exhibit better alignment than those farther away from fibers.  相似文献   

18.
郑必举  胡文 《强激光与粒子束》2014,26(5):059003-300
通过脉冲激光器(Nd-YAG)在AZ91D镁合金基底上熔覆Al+SiC粉体。采用扫描电子显微镜、能量色散谱(EDS)和X-射线衍射测定分析熔覆层的显微组织、化学成分和物相组成。研究表明:Al+SiC涂层主要由SiC,β-Mg_(17)Al_(12)及Mg和Al相组成,激光熔覆层与镁合金基底表现出良好的冶金结合。所有样品都具有树枝状结构,且随着SiC质量分数的增大,树枝状和胞状结构的间隔变得更大。熔覆涂层的表面硬度高于基底,并且随着熔覆层中的SiC质量分数的增加而增大,SiC质量分数为40%的熔覆层具有最大的显微硬度,达到180 HV,然而质量分数为10%的熔覆层硬度为136 HV。销盘滑动磨损试验表明,复合涂层中的SiC颗粒和原位合成的Mg_(17)Al_(12)相显著提高了AZ91D镁合金的耐磨损性,其中,SiC质量分数从10%增加到30%过程中磨损体积损失逐渐减少,SiC质量分数在20%~30%时熔覆层具有最好的耐磨性。  相似文献   

19.
Laser irradiation effects on surface, structural and mechanical properties of Al–Cu–Mg alloy (Al–Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al–Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.  相似文献   

20.
采用沉积的方法在镁合金AZ31表面制备植酸转化膜并研究了pH值的影响. 利用极化曲线和电化学阻抗谱方法测定其耐腐蚀性能,用扫描电子显微镜观察转化膜的表面微观结构,用能谱测定转化膜的组成元素. 在理论上通过热力学的方法分析最佳pH值. 植酸转化膜可以提高镁合金AZ31的耐腐蚀性能. 当植酸溶液的pH=5时腐蚀效率达到了89.19%,此时腐蚀电位正移了156 mV,腐蚀电流密度与没有处理的试样相比减小了约一个数量级. 热力学分析表明植酸转化膜的耐腐蚀性能不仅受植酸根离子和镁离子浓度的影响,也与氢气释放的速率有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号