首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleation of vortex rings accompanies the collapse of ultrasound bubbles in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we elucidate the various stages of the collapse of a stationary spherically symmetric bubble and establish conditions necessary for vortex nucleation. The minimum radius of the stationary bubble, whose collapse leads to vortex nucleation, was found to be 28+/-1 healing lengths. The time after which the nucleation becomes possible is determined as a function of the bubble's radius. We show that vortex nucleation takes place in moving bubbles of even smaller radius if the motion makes them sufficiently oblate.  相似文献   

2.
Experimental investigations have been carried out on chevron nozzles to assess the importance of chevron parameters such as the number of chevrons (chevron count) and chevron penetration. Acoustic measurements such as overall sound pressure level, spectra, directivity, acoustic power, and broadband shock noise have been made over a range of nozzle pressure ratio from sub-critical to underexpansion levels. Shadowgraph images of the shock-cell structure of jets from various chevron nozzles have also been captured for different nozzle pressure ratios. The results indicate that a higher chevron count with a lower level of penetration yields the maximum noise suppression for low and medium nozzle pressure ratios. Of all the geometries studied, chevron nozzle with eight lobes and 0° penetration angle gives the maximum noise reduction. Chevron nozzles are found to be free from screech unlike regular nozzles. Acoustic power index has been calculated to quantitatively evaluate the performance of the various chevron nozzles. Chevron count is the pertinent parameter for noise reduction at low nozzle pressure ratios, whereas at high nozzle pressure ratios, chevron penetration is crucial. The results illustrate that by careful selection of chevron parameters substantial noise reduction can be achieved.  相似文献   

3.
Vortex rings have been a subject of interest in vortex dynamics due to a plethora of physical phenomena revealed by their motions and interactions within a boundary. The present paper is devoted to physics of a head-on collision of two vortex rings in three dimensional space, simulated with a second order finite volume scheme and compressible. The scheme combines non-iterative approximate Riemann-solver and piecewise-parabolic reconstruction used in inviscid flux evaluation procedure. The computational results of vortex ring collisions capture several distinctive phenomena. In the early stages of the simulation, the rings propagate under their own self-induced motion. As the rings approach each other, their radii increase, followed by stretching and merging during the collision. Later, the two rings have merged into a single doughnut-shaped structure. This structure continues to extend in the radial direction, leaving a web of particles around the centers. At a later time, the formation of ringlets propagate radially away from the center of collision, and then the effects of instability involved leads to a reconnection in which small-scale ringlets are generated. In addition, it is shown that the scheme captures several experimentally observed features of the ring collisions, including a turbulent breakdown into small-scale structures and the generation of small-scale radially propagating vortex rings, due to the modification of the vorticity distribution, as a result of the entrainment of background vorticity and helicity by the vortex core, and their subsequent interaction.  相似文献   

4.
We investigated the motion of domain walls in ferromagnetic cylindrical nanowires by solving the Landau–Lifshitz–Gilbert equation numerically for a classical spin model in which energy contributions from exchange, crystalline anisotropy, dipole–dipole interactions, and a driving magnetic field are considered. Depending on the diameter, either transverse domain walls or vortex walls are found. A transverse domain wall is observed for diameters smaller than the exchange length of the given system. In this case, the system effectively behaves one dimensionally and the domain wall velocity agrees with the result of Slonczewski for one-dimensional walls. For larger diameters, a crossover to a vortex wall sets in which enhances the domain wall velocity drastically. For a vortex wall the domain wall velocity is described by the Walker formula.  相似文献   

5.
This work investigated multiple jet nozzles with various geometrical shape, number of exits, and material on reducing noise radiated from jet flows. Nozzles are categorized in two groups with few and many exit numbers, each with various exit shapes, slot and circular, and geometry. Firstly, nozzles are designed and then fabricated by a 3D printer, Form Labs, Form2USA, with polymeric resin. Also, the nozzle with the most noise reduction made of stainless steel. Noise and air thrust were measured at three air pressure gauges, 3, 5, 7 BAR and directions from nozzle apex, 30°, 90°, 135°. Nozzles with slot exit shape made of both plastic and stainless steel revealed the most noise reduction among all nozzles with few exit numbers, nearly 11–14 dB(A) and 11.5–15 dB(A), respectively. On average, slotted nozzle noise reduction was nearly 5–6 dB(A) more than finned nozzle. However, nozzles with more exit numbers, finned and finned-central exit, illustrated much more noise reduction than nozzles with few exit numbers, by almost 16–18 dB(A), they represented similar sound. All tested nozzles and open pipe demonstrated equal air thrust at each pressure gauges. The nozzles with slotted exit shape, either plastic or stainless steel, can provide reasonable noise reduction in comparison to other configuration with few exit numbers. In contrast, nozzles with more exit numbers demonstrated the most noise reduction.  相似文献   

6.
The Hall-Vinen-Bekarevich-Khalatnikov theory is applied to the laminar flow of superfluid helium through capillary tubes. Velocity profiles obtained for the superfluid are interpreted in terms of the motion of vortex rings. The thermodynamic potential gradient as a function of the average superfluid and normal fluid velocities compares favourably with recent experimental results. It is concluded that the vortex rings originate at the wall and disappear at the tube axis.  相似文献   

7.
The equations of motion of three coaxial vortex rings in Euclidean 3-space are formulated as a Hamiltonian system. It is shown that the Hamiltonian function for this system can be written as the sum of a completely integrable part H0 (related to the motion of three point vortices in the plane) and a non-integrable perturbation H1. Then it is proved that when the vortex strengths all have the same sign and the ratio of the mean distances among the rings is very small in comparison to the mean radius of the rings, H1/H01. Moreover, it is shown that H1/H0 is very small for all time for certain initial positions of the rings under the same assumptions. It is proved that the decomposition of the Hamiltonian and the estimates carry over to a reduced form of the system in coordinates moving with the center of vorticity and having one less degree of freedom. Then KAM theory is applied to prove the existence of invariant two-dimensional tori containing quasiperiodic motions. The existence of periodic solutions is also demonstrated. Several examples are solved numerically to show transitions from quasiperiodic and periodic to chaotic regimes in accordance with the theoretical results.  相似文献   

8.
9.
The leapfrogging motion of vortex rings is a three-dimensional version of the motion that in two dimensions leads to exotic exchange statistics. The statistical phase factor can be computed using the hydrodynamical Euler equation, which suggests that three-dimensional exotic exchange statistics is a common property of vortex rings in a variety of quantum liquids and gases. Potential applications range from helium superfluids to Bose-Einstein condensed alkali gases, metallic hydrogen in its liquid phases, and maybe even nuclear matter in extreme conditions.  相似文献   

10.
赵志刚  何国良  王永刚  刘楣 《物理学报》2004,53(8):2751-2754
用有限温度下的分子动力学方法模拟二维无序钉扎磁通系统的低频宽带电压噪声.计算了磁通运动的电压噪声谱密度,研究了宽带噪声(BBN)随驱动电流、钉扎强度和温度的变化规律.BBN随钉扎强度的增加而增大,反映了BBN是磁通运动受体钉扎阻碍而产生的内部耗散. BBN随温度的升高而减小,表明热运动部分抵消了体钉扎以及磁通之间相互作用,软化了磁通线格子,使磁通运动BBN减小.以上结论与实验相符,并能解释磁通运动的微观图像. 关键词: 第Ⅱ类超导体 电压噪声 动力学模拟  相似文献   

11.
We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field dependence of the flux flow velocity strongly depends on the particular magnetic state of the rings. In particular, we find that, even when the rings are in a flux closure state, i.e. with little stray field, the vortex critical velocity shows a non-monotonic magnetic field dependence. This behaviour is in sharp contrast with the results obtained in a reference plain film, with no rings underneath. A comparison with the intrinsic strong pinning Nb films previously studied, suggests an interpretation in terms of a channel-like motion of vortices, here induced by the artificial pinning structure.  相似文献   

12.
We consider the evolution and dissipation of vortex rings in a condensate at nonzero temperatures in the context of the classical field approximation, based on the defocusing nonlinear Schr?dinger equation. The temperature in such a system is fully determined by the total number density and the number density of the condensate. The collisions with noncondensed particles reduce the radius of a vortex ring until it completely disappears. We obtain a universal decay law for a vortex line length and relate it to mutual friction coefficients in the fundamental equation of vortex motion in superfluids.  相似文献   

13.
An analysis is presented of two problems in vortex dynamics whose equations can be written in the Hamiltonian form. They are: the interaction of three coaxial vortex rings and the motion of four point vortices on a sphere. The nonintegrability of these problems in the restricted formulation is demonstrated analytically by the method of split separatrices, using a small parameter. (c) 1997 American Institute of Physics.  相似文献   

14.
The effects of aircraft forward motion on pure turbulent mixing noise from unheated jets have been examined experimentally in the in-flight simulation mode. Both acoustic and flow characteristics were determined by testing model-scale nozzles in an anechoic free jet facility and a wind tunnel, respectively. Scaling laws were derived from each set of experiments and found to be complementary. The implications are discussed in detail. In particular, it is shown that the measured reduction in noise at 90° to the jet axis is a pure source alteration effect.  相似文献   

15.
We present diverse reconfigurable complex 3D twister vortex superlattice structures in a large area embedded with tunable vortex spirals as well as dark rings, threaded by vortex helices. We demonstrate these tunable complex chiral vortex superlattices by the superposition of relatively phase engineered plane waves. The generated complex 3D twister lattice vortex structures are computationally as well as experimentally analyzed using various tools to verify the presence of phase singularities. Our observation indicates the application-specific flexibility of our approach to tailor the transverse superlattice spatial irradiance profile of these longitudinally whirling vortex-cluster units and dark rings.  相似文献   

16.
A new method is presented for the prediction of unsteady axisymmetric inviscid flows. By combining a triangulated vortex approach with a novel evaluation technique for the Biot–Savart integrals, a Lagrangian vortex method is developed which eliminates the singularities usually present in axisymmetric methods, without recourse to normalizations or other approximations. Furthermore, the computational effort scales as the number of control points N and, in the large N limit, depends only on the order of quadrature employed. The accuracy and computational effort are assessed by comparison with the velocity field of a Gaussian core vortex ring and the use of the technique is illustrated by computation of the motion of Norbury rings and of vortex ring pairing.  相似文献   

17.
Acoustic waves emitted by a vortex ring moving near a circular cylinder have been studied experimentally and theoretically. The vortex rings used in the experiments had a translational speed ν0 in the range 26 ⪅ ν0 ⪅ 58 m/s and a radius of about 4·7 mm comparable in size with the cylinder radius. The acoustic pressure signals were detected by four microphones in the far field, and analyzed by digital methods. The observed pressure p obeys the scaling law pν03L−4, where L is the impact distance of the vortex path to the cylinder. The observed sound wave is of dipole radiation type, and the direction of the dipole axis rotates as the vortex position changes relative to the cylinder. The direction of the dipole axis is related to that of the normal to the plane of the vortex ring. The instantaneous resultant force exerted on the cylinder by the vortex motion has also been examined, and the magnitude and the direction determined experimentally as a function of time. The theory of vortex sound predicts that the wave profile is proportional to the second time derivative of the volume flux (of a hypothetical potential flow around the cylinder) through the vortex ring. The observed scaling law and dipole directivity of the pressure are in good agreement with the theoretical predictions. The pressure profiles are calculated by using the observed vortex motion. These profiles also agree well with the observed ones, confirming the validity of the theory.  相似文献   

18.
由三维离散涡丝方法对气固轴对称射流场数值模拟的结果表明,当固粒 St数<<1时,固粒明显受到流场运动的影响; St= 1时,固粒均匀分布在涡结构周围;当 St >>1时,固粒受流场影响较弱。对涡环沿周向施以五个波长扰动时,固粒扩散范围较宽。  相似文献   

19.
矩形通道内横流喷雾掺混流场的实验研究   总被引:2,自引:0,他引:2  
应用PIV系统对矩形通道内横流-喷雾掺混过程中液滴沿横流方向的流场进行了实验测量.分别获得了单喷嘴和双喷嘴下横流掺混中的流场结构,以及液滴的水平速度分布.横流作用下,液滴的最大水平速度为横流速度的两倍左右;反旋涡对降低了液滴的水平速度,提高了液滴在横流中的停留时间.双喷嘴条件下,横流截面上的液滴密集区域呈狭长的三角形,...  相似文献   

20.
提出并发展的一种基于区域分解思想,综合了解N-S方程的有限差分法及涡法各自优点的新数值方法,计算了各种 Keulegan-Carpenter数下(Kc=2~24)振荡流绕圆柱的流动。系统地研究了振荡流中涡旋运动模式随Kc数变化的规律,模拟了不对称区、单对涡区(或模向区)、双对涡区(或对角区)和三对涡区四种不同的涡旋运动模式。将计算所得的阻力系数CD、惯性系数CM与国外近期发表的计算结果进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号