首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conductivity behavior of Al(OH)3-acrylamide hybrid polyacrylamide (hybrid PAAm) in distilled water was studied. A discontinuity phenomenon of the conductivity (k) versus concentration (c) curve of the hybrid PAAm in a certain concentration regime is found. This phenomenon is dependent on the molecular weight of the hybrid PAAm and on the particle size and content of the Al(OH)3 colloid in the hybrid PAAm. This phenomenon was accounted for assuming ionization of the hybrid PAAm.  相似文献   

2.
The conductivity behavior of Al(OH)3-acrylamide hybrid polyacrylamide (hybrid PAAm) in distilled water was studied. A discontinuity phenomenon of the conductivity (k) versus concentration (c) curve of the hybrid PAAm in a certain concentration regime is found. This phenomenon is dependent on the molecular weight of the hybrid PAAm and on the particle size and content of the AI(OH)3 colloid in the hybrid PAAm. This phenomenon was accounted for assuming ionization of the hybrid PAAm.  相似文献   

3.
A novel flocculant of Al(OH)3-polyacrylamide ionic hybrid   总被引:3,自引:0,他引:3  
A novel flocculant based on hybrid Al(OH)(3)-polyacrylamide (HAPAM) has been synthesized using a redox initiation system ((NH(4))(2)S(2)O(8)-NaHSO(3)) at 40 degrees C in aqueous medium. The HAPAM was characterized by viscometry, IR spectroscopy, TEM, conductivity, and TGA. The flocculation behavior for 0.25 wt% kaolin suspension was evaluated by spectrophotometry and phase contrast microscopy. It was found that an ionic bond exists between Al(OH)(3) colloid and polyacrylamide (PAM) chains in the HAPAM and the flocculation efficiency of HAPAM is much better than that of commercial polyacrylamide (PAM) and PAM/AlCl(3) blend.  相似文献   

4.
The gelation of buffered aqueous Cr+3/polyacrylamide (PAAm) solutions has been studied over the pH range 2-11. With Cr+3 supplied as Cr(NO3)3 and a 7.5% hydrolyzed PAAm the upper limit for gelation was about pH 7, but Cr(acetate)3/PAAm solutions gelled as high as pH 9. Evidence is presented that the formation of unreactive colloidal Cr(OH)3(H2O)3, rather than polymer crosslinking, is favored thermodynamically for Cr+3/PAAm solutions at pH > 7. The crosslinks formed in Cr(acetate)3/PAAm solutions at pH 7–9 are deduced to be kinetically controlled products. Independent evidence for the kinetic stability of Cr+3/PAAm gels above pH 7 has also been obtained. Other observations relevant to the mechanism of crosslinking of PAAm with Cr(acetate)3 are described.  相似文献   

5.

Acrylamide (AAm) was found to polymerize in a solution of poly(N‐isopropylacrylamide) (PNIPAAm) in water at around its lower critical solution temperature (LCST) (32°C) without any initiators. This phenomenon was specifically observed in aqueous solutions of the polymers having LCST such as PNIPAAm and poly(methylvinylether) (PMVE). AAm polymerized only when PNIPAAm and AAm were dissolved in water below LCST of PNIPAAm and then the solution was warmed up to the polymerization temperature (40°C). On the other hand, the polymerization of AAm did not proceed when AAm was added into aqueous PNIPAAm solution during and after the phase separation above 32°C. Furthermore the polymerizability of AAm was remarkably affected by the concentration and molecular weight of the PNIPAAm additives. Under the condition of lower PNIPAAm concentration (0.30 mol/L), the increase in the molecular weight of PNIPAAm considerably increased the molecular weight of the resulting PAAm but decreased the yield of PAAm. Under the condition of higher PNIPAAm concentration (0.60 mol/L) the polymerizability was not so affected by the molecular weight of PNIPAAm, while the molecular weight of PAAm formed by using higher molecular weight PNIPAAm was higher than those of PAAm formed by using lower molecular weight PNIPAAm. Moreover, the molecular weight of PAAm formed by the PNIPAAm induced polymerization of AAm was much higher than that of the polymer obtained by the radical polymerization using AIBN in THF or VA‐ 061 in water.  相似文献   

6.
The static and dynamic mechanical behavior of two double network (DN) hydrogels, alginate/polyacrylamide (PAAm) hybrid hydrogel and sodium poly(2-acrylamido-2-methylpropanesulfonic acid) PNaAMPS/PAAm, is presented to understand the role played by different cross-linked networks on fracture and recovery properties. Although with a smaller modulus, alginate/PAAm hybrid hydrogel had a much higher stretchability, whether with or without notches, in the tensile tests. Continuous step strain measurement by using a strain-controlled parallel-plate rheometer showed that alginate/PAAm can immediately recover its mechanical properties after breakdown, while PNaAMPS/PAAm didn't show mechanical recovery at all.  相似文献   

7.
过饱和铝酸钠溶液中氢氧化铝自发成核动力学规律的研究   总被引:9,自引:0,他引:9  
用电导法和吸光光度法首次对苛性比相同的不同浓度过饱和铝酸钠溶液自发分解过程进行了实时跟踪研究,获得铝酸钠溶解氢氧化铝自发成核动力学方程,探索了H2O和Na+对氢氧化铝自发成核过程的影响.结果表明,过饱和铝酸钠溶液分解为氢氧化铝属化学反应控制过程;H2O参与了溶液分解过程控制步骤的反应;K+和Na+等阳离子参与了溶液的重构,但对溶液分解的控制步骤影响不大.  相似文献   

8.
Swelling behavior of polyacrylamide (PAAm) and polyacrylamide-co-polyacrylic acid (PAAm-co-PAAc) gels was investigated in aqueous solutions of monodisperse PAAms with molecular weights (Mw) ranging from 1.5 × 103 to 5 × 106 g/mol. The volume of the gels decreases as the PAAm concentration in the external solution increases. This decrease becomes more pronounced as the molecular weight of PAAm increases. The classical Flory–Huggins (FH) theory correctly predicts the swelling behavior of nonionic PAAm gels in PAAm solutions. The polymer–polymer interaction parameter χ23 was found to decrease as the molecular weight of PAAm increases. The swelling behavior of PAAm-co-PAAc gels in PAAm solutions deviates from the predictions of the FH theory. This is probably due to the change of the ionization degree of AAc units depending on the polymer concentration in the external solution. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1313–1320, 1998  相似文献   

9.
Summary : Polysaccharide-based materials have gained nowadays a great importance in many fields of industry, e.g., in the pharmaceutical industry. Some characteristics of such compounds are their non-toxicity and the presence of a lower critical solution temperature (LCST) and/or an upper critical solution temperature (UCST). This work presents results on the synthesis and characterization of composites from hydroxypropyl cellulose (HPC) and polyacrylamide (PAAm). The ratio of HPC/PAAm was varied as well as the concentration of the crosslinker and the pH value of the reaction mixture. The compounds prepared were characterized by means of Fourier Transform Infrared spectroscopy (FTIR) and turbidity measurements. FTIR spectroscopy showed the presence of the main structural features of the precursors in the gels. The turbidity measurements of the gels in water showed the presence of a LCST in all samples. The LCST decreased when the quantity of HPC was increased in the gel and diminished also with increasing quantities of crosslinker and pH. The turbidity measurement showed the presence of an UCST when the concentration of the polymer was higher than 1% (w/w). This phenomenon is caused by the presence of the PAAm, which acted as precipitant and influenced over the entropy of the system and provoked phase separation.  相似文献   

10.
The density functional theory and the cluster model methods have been employed to investigate the interactions between ethanethiol and HZSM-5 zeolites. Molecular complexes formed by the adsorption of ethanethiol on silanol H3SiOH with two coordination forms, model Bronsted acid sites of zeolite cluster H3Si(OH)Al(OH)2SiH3 interaction with ethanethiol, aluminum species adsorbed ethanethiol have been comparatively studied. Full optimization and frequency analysis of all cluster models have been carried out using B3LYP hybrid method at 3-21G basis level for hydrogen atoms and 6-31G(d) basis set level for silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms of H3Si(OH)Al(OH)2SiH3-ethanethiol, silanol-ethanethiol and Al(OH)3-ethanethiol have been studied. The calculated results showed the nature of interactions was van der Waals force as exhibited by not much change in geometric structures and properties. The preference order of ethanethiol adsorbed on HZSM-5 zeolite may be residual aluminum species, bridging hydroxyl groups and silanol OH groups from the adsorption heat. The adsorbed models of protonized ethanethiol on bridging hydroxyl OH groups and linear hydrogen bonded ethanethiol on bridging OH groups suggested in literature might not exist as revealed by this theoretical calculation. Possible adsorption models were obtained for the first time.  相似文献   

11.
The proton conductivities of the porous coordination polymers M(OH)(bdc-R) [H(2)bdc = 1,4-benzenedicarboxylic acid; M = Al, Fe; R = H, NH(2), OH, (COOH)(2)] were investigated under humid conditions. Good correlations among pK(a), proton conductivity, and activation energy were observed. Fe(OH)(bdc-(COOH)(2)), having carboxy group and the lowest pK(a), showed the highest proton conductivity and the lowest activation energy in this system. This is the first example in which proton conductivity has been widely controlled by substitution of ligand functional groups in an isostructural series.  相似文献   

12.
The density functional theory and cluster model methods have been employed to investigate the interactions between methanethiol, dimethyl sulfide and zeolites. The molecular complexes formed by adsorption of methanethiol or dimethyl sulfide on silanol H3SiOSi(OH)2OSiH3 with five coordination forms or four coordination forms, and complexes formed by interactions of Bronsted acid sites of bridging hydroxyl H3Si(OH)Al(OH)2OSiH3 with methanethiol or dimethyl sulfide have been investigated. Full optimization and frequency analysis of all cluster models have been carried out using the B3LYP hybrid method at 6-31 G (d,p) basis set level for hydrogen, silicon, aluminum, oxygen, carbon, and sulfur atoms. The structures and energy changes of different coordination forms between methanethiol and H3Si(OH)Al(OH)2OSiH3, dimethyl sulfide and H3Si(OH)Al(OH)2OSiH3, methanethiol and H3SiOSi(OH)2OSiH3, dimethyl sulfide and H3SiOSi(OH)2OSiH3 complexes have been comparatively studied. The calculated results showed the nature of interactions that led to the formation of all complexes was van der Waals force confirmed by an insignificant change of geometric structures and properties. The conclusions that methanethiol and dimethyl sulfide molecules were adsorbed on bridging hydroxyl group prior to silanol group were obtained on the basis of adsorption heat, the most stable adsorption models of a 6 ring structure for interaction between bridging hydroxyl and methanethiol, and a 7 ring structure for interaction between bridging hydroxyl and dimethyl sulfide.  相似文献   

13.
The growth kinetics of colloidal Al(III)-containing particles (diameter<1000 nm), nucleated in optically clear, supersaturated sodium aluminate solutions as a precursor to Al(OH)(3) crystals, has been studied using dynamic light scattering. Two series of solutions were examined at 22 degrees C to determine the influence of Al(III) supersaturation and NaOH concentration on the initial particle growth behavior. One solution series consisted of solutions with constant Al(III) absolute supersaturation (DeltaC) of 1.48 M and [NaOH] range 1.83-4.00 M ([NaOH]/[Al(III)]=1.13-2.15) and Al(III) relative supersaturation (sigma)=3.86-10.36. The other solution series had a constant sigma of 7.55 and [NaOH] range of 1.50-4.27 M ([NaOH]/[Al(III)]=1.18-1.54) and DeltaC=0.86-3.19. The correlation between the initial particle growth rates and supersaturation (DeltaC or sigma) revealed marked anomalies over the entire supersaturation range studied. The growth rate remained substantially constant in the DeltaC range 0.86-2.55 M (for the constant sigma solution series), before increasing sharply upon a further increase of DeltaC beyond 2.55 M. The variation of the growth rate with sigma in the range 3.86-9.00 (for the constant DeltaC solution series) was remarkably weak, contrary to expectation. At higher sigma (>9.00), however, a marked increase in growth rate with increasing sigma was displayed. At constant DeltaC or sigma, the growth rate showed a strong variation with NaOH concentration, indicating that Na(+) and OH(-) species play a pivotal role in the Al(OH) precursor particles (nuclei) growth process. Furthermore, the kinetics of growth displayed by these nanosized particles are an order of magnitude slower than those observed for macroscopic gibbsite (gamma-Al(OH)(3)) crystals at similar supersaturations and temperature. The difference may be rationalized in terms of particle size and Al(OH)(3) dimorphic phase dependent solubility effects. An empirically adequate growth kinetics modeling was achieved when the growth rates were correlated with the Al(III) supersaturation (DeltaC or sigma) and the excess (free) NaOH concentration, rather than the former alone, as is commonly the case. A critical [NaOH]/[Al(III)] molar ratio of 1.27-1.35, below which the particle growth rate increased markedly and above which the rate was significantly reduced, was observed. This behavior is believed to be linked to solution speciation change that occurs at certain Al(III) and NaOH compositions.  相似文献   

14.
用恒电流充电曲线法研究了CKOH、CAl以及电流密度对铝电极惰化的影响,得到i~τ-1/2之间符合如下的不稳定扩散方程: 曲线由不同斜率的两条直线组成,iL系铝腐蚀产生H2搅拌的影响。同时,还求得了几种KOH溶液中CAlS和DAl的值。 实验结果表明:低电流密度区,惰化过程受Al(OH)4-扩散控制,由过饱和Al(OH)4-溶液中析出成相的Al(OH)3或Al2O3膜,引起电极惰化。高电流密度区,除扩散外,还可能由电化学反应直接形成表面惰化层。  相似文献   

15.
Organic-inorganic nanocomposite protective coatings are prepared on aluminum substrates by the spinning technique with the concept of incorporating homogeneously nanosized particles (of AlOOH, Al2O3, ZrO2, SiC) into molecular organic-inorganic hybrid matrices. The hybrid matrices are prepared from epoxysilane and bisphenol A with imidazol as catalyst. The AlOOH particles are derived from aluminum isoprooxide and introduced into the hybrid sols directly, and Al2O3, ZrO2, SiC particles are first surface-modified with Si–OH from hydrolyzed TEOS. The coatings are dense, smooth and flexible and inhibit corrosion.  相似文献   

16.
We have investigated the ultrafast dynamics of aqueous polyacrylamide ([-CH(2)CH(CONH(2))-](n), or PAAm) solutions using femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The observed aqueous PAAm dynamics are nearly identical for both M(w) = 1500 and 10 000. Aqueous propionamide (CH(3)CH(2)CONH(2), or PrAm) solutions were also studied, because PrAm is an exact model for the PAAm constitutional repeat unit (CRU). The longest time scale dynamics observed for both aqueous PAAm and PrAm solutions occur in the 4-10 ps range. Over the range of concentrations from 0 to 40 wt %, the picosecond reorientation time constants for the aqueous PAAm and PrAm solutions scale linearly with the solution concentration, despite the fact that the solution shear viscosities vary exponentially from 1 to 264 cP. For a given value of solution concentration in weight percent, constant ratios of measured reorientation time constants for PAAm to PrAm are obtained. This ratio of PAAm to PrAm reorientation time constants is equal to the ratio of the volume for the PAAm constitutional repeat unit (-CH(2)CHCONH(2)-) to the molecular volume of PrAm. For these reasons, we assign the polymer reorientation dynamics to motions of the entire constitutional repeat unit, not only side group motions. Simple molecular dynamics simulations of H[-CH(2)CH(CONH(2))-](7)H in a periodic box with 180 water molecules support this assignment. Amide-amide and amide-water hydrogen-bonding interactions lead to strongly oscillatory femtosecond dynamics in the Kerr transients, peaking at 80, 410, and 750 fs.  相似文献   

17.
根据IR,ESR,XPS和电导率的测试结果推定,在催化剂聚丙烯酰胺-CuCl~2膜表面上,1个Cu^2^+与聚丙烯酰胺4个链节单元配位,产生σ配位键而交联,形成疏水性的聚丙烯酰胺-Cu(Ⅱ)配位聚合物膜.从该膜的X射线光电子能谱中的Shake-up效应得知,膜表面的Cu^2^+具有高自旋态电子构型,其缺位处与醋酸乙烯酯,Na~2SO~3配位活化,并产生自由基氢,从而在室温Na~2SO~3水溶液体系(pH=7)中能催化引发醋酸乙烯酯按自由基加聚反应历程进行聚合,诱导期3min20s,得率75%。  相似文献   

18.
The effect of the molar ratio of hydroxide and fluoride ions to Al(III) ions (gamma(OH) and gamma(F)) on coagulation and electrocoagulation (EC) was studied to solve the problem of the over addition of acid or base. The efficiency of defluoridation was approximately 100% when the sum of gamma(OH) and gamma(F) (gamma(OH+F)) was close to 3. This finding reveals that the fluoride ions and the hydroxide ions can co-precipitate with Al(III) ions and the formula of the precipitate is Al(n)F(m)(OH)(3n-m). However, when gamma(OH) was less than 2.4, the defluoridation efficiency, given that gamma(OH+F)=3, dropped as gamma(OH) fell, because the amount of aluminum polymer formed dropped. The efficiency of defluoridation of EC exceeded that of coagulation for equal gamma(OH) and gamma(OH+F), when gamma(OH+F)>3, proving the existence of an electrocondensation effect.  相似文献   

19.
The mechanical strength of double network (DN) gels consisting of highly cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as the first component and linear polyacrylamide (PAAm) as the second component has been investigated by varying the molecular weight of the second polymer PAAm, M(w). The experimental results reveal that, for toughening of the DN gels, (1) M(w) is one of the dominant parameters; (2) there is a critical value of M(w) = 10(6) for a remarkable enhancement; (3) the fracture energy of DN gels with a M(w) larger than 10(6) reaches a value as high as 10(3) J/m(2). By plotting the strength of DN gels (fracture stress sigma and fracture energy G) against a characteristic parameter of c[eta], where c is the average concentration of PAAm in the DN gels and [eta] is the intrinsic viscosity of PAAm, it is found that the dramatic increase in the mechanical strength of the DN gels occurs above the region where linear PAAm chains are entangled with each other. Thus, we conclude that the entanglement between the second component PAAm plays an important role of the toughening mechanism of DN gels. This result supports the heterogeneous model, which predicts the presence of "voids" of the first network PAMPS with a size much larger than the radius of the second polymer PAAm.  相似文献   

20.
The present work describes the synthesis and characterization of gel polymer electrolytes containing methanesulfonic acid (MSA) with Polyacrylamide (PAAm). The PAAm–MSA gel electrolytes were prepared with different concentrations of MSA. Addition of 0.5 M of MSA into the electrolyte increased the ionic conductivity of PAAm from 1.35 × 10?3 to 1.56 × 10?2 S cm?1. The maximum ionic conductivity of 7.0 × 10?1 S cm?1 was obtained with 3 M MSA at room temperature. The chemical interaction between PAAm and MSA was studied by Fourier transformed infra-red. The performance as a polymer electrolyte was evaluated from the cell discharge and open circuit potential measurements of a tin-air cell. The tin-air cell supported relatively high current, up to 12 mA cm?2 with a maximum power density of 5 mW cm?2. The open-circuit potential of the cell was 1.27 V for 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号